Pytorch模型从CPU转换成GPU

转自:https://blog.csdn.net/qq_28444159/article/details/78781201
仅个人学习使用,方便查找

环境:Ubuntu 16.04.3
Python版本:3.5.2
Pytorch版本:0.4.0

0. 序言

大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了。
最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了“高大上”GPU版本。
看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来。

1. 如何进行迁移

由于我使用的是Pytorch写的模型,网上给出了一个非常简单的转换方式: 对模型和相应的数据进行.cuda()处理。通过这种方式,我们就可以将内存中的数据复制到GPU的显存中去。从而可以通过GPU来进行运算了。

网上说的非常简单,但是实际使用过程中还是遇到了一些疑惑。下面分数据模型两方面的迁移来进行说明介绍。

1.1 判定使用GPU

下载了对应的GPU版本的Pytorch之后,要确保GPU是可以进行使用的,通过torch.cuda.is_available()的返回值来进行判断。返回True则具有能够使用的GPU。
通过torch.cuda.device_count()可以获得能够使用的GPU数量。其他就不多赘述了。
常常通过如下判定来写可以跑在GPU和CPU上的通用模型:

if torch.cuda.is_available():
    ten1 = ten1.cuda()
    MyModel = MyModel.cuda() 
 
   
   
   
   
  • 1
  • 2
  • 3

2. 对应数据的迁移

数据方面常用的主要是两种 —— TensorVariable。实际上这两种类型是同一个东西,因为Variable实际上只是一个容器,这里先视其不同。

2.1 将Tensor迁移到显存中去

不论是什么类型的Tensor(FloatTensor或者是LongTensor等等),一律直接使用方法.cuda()即可。
例如:

ten1 = torch.FloatTensor(2)
>>>>  6.1101e+24
      4.5659e-41
      [torch.FloatTensor of size 2]

ten1_cuda = ten1.cuda()
>>>>   6.1101e+24
       4.5659e-41
       [torch.cuda.FloatTensor of size 2 (GPU 0)]

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

其数据类型会由torch.FloatTensor变为torch.cuda.FloatTensor (GPU 0)这样代表这个数据现在存储在
GPU 0的显存中了。
如果要将显存中的数据复制到内存中,则对cuda数据类型使用.cpu()方法即可。

2.2 将Variable迁移到显存中去

在模型中,我们最常使用的是Variable这个容器来装载使用数据。主要是由于Variable可以进行反向传播来进行自动求导。
同样地,要将Variable迁移到显存中,同样只需要使用.cuda()即可实现。

这里有一个小疑问,对Variable直接使用.cuda和对Tensor进行.cuda然后再放置到Variable中结果是否一致呢。答案是肯定的。

ten1 = torch.FloatTensor(2)
>>>  6.1101e+24
     4.5659e-41
    [torch.FloatTensor of size 2]

ten1_cuda = ten1.cuda()
>>>>  6.1101e+24
      4.5659e-41
    [torch.cuda.FloatTensor of size 2 (GPU 0)]

V1_cpu = autograd.Variable(ten1)
>>>> Variable containing:
     6.1101e+24
     4.5659e-41
    [torch.FloatTensor of size 2]

V2 = autograd.Variable(ten1_cuda)
>>>> Variable containing:
     6.1101e+24
     4.5659e-41
    [torch.cuda.FloatTensor of size 2 (GPU 0)]

V1 = V1_cpu.cuda()
>>>> Variable containing:
     6.1101e+24
     4.5659e-41
    [torch.cuda.FloatTensor of size 2 (GPU 0)]

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

最终我们能发现他们都能够达到相同的目的,但是他们完全一样了吗?我们使用V1 is V2发现,结果是否定的。

对于V1,我们是直接对Variable进行操作的,这样子V1的.grad_fn中会记录下创建的方式。因此这二者并不是完全相同的。

2.3 数据迁移小结

.cuda()操作默认使用GPU 0也就是第一张显卡来进行操作。当我们想要存储在其他显卡中时可以使用.cuda(<显卡号数>)来将数据存储在指定的显卡中。还有很多种方式,具体参考官方文档。

对于不同存储位置的变量,我们是不可以对他们直接进行计算的。存储在不同位置中的数据是不可以直接进行交互计算的。
换句话说也就是上面例子中的torch.FloatTensor是不可以直接与torch.cuda.FloatTensor进行基本运算的。位于不同GPU显存上的数据也是不能直接进行计算的。

对于Variable,其实就仅仅是一种能够记录操作信息并且能够自动求导的容器,实际上的关键信息并不在Variable本身,而更应该侧重于Variable中存储的data。

3. 模型迁移

模型的迁移这里指的是torch.nn下面的一些网络模型以及自己创建的模型迁移到GPU上去。

上面讲了使用.cuda()即可将数据从内存中移植到显存中去。
对于模型来说,也是同样的方式,我们使用.cuda来将网络放到显存上去。

3.1 torch.nn下的基本模型迁移

这里使用基本的单层感知机来进行举例(线性模型)。

data1 = torch.FloatTensor(2)
data2 = data1.cuda

# 创建一个输入维度为2,输出维度为2的单层神经网络
linear = torch.nn.Linear(2, 2)
>>>> Linear(in_features=2, out_features=2)

linear_cuda = linear.cuda()
>>>> Linear(in_features=2, out_features=2)

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

我们很惊奇地发现对于模型来说,不像数据那样使用了.cuda()之后会改变其的数据类型。模型看起来没有任何的变化。
但是他真的没有改变吗。
我们将data1投入linear_cuda中去可以发现,系统会报错,而将.cuda之后的data2投入linear_cuda才能正常工作。并且输出的也是具有cuda的数据类型。

那是怎么一回事呢?
这是因为这些所谓的模型,其实也就是对输入参数做了一些基本的矩阵运算。所以我们对模型.cuda()实际上也相当于将模型使用到的参数存储到了显存上去。

对于上面的例子,我们可以通过观察参数来发现区别所在。

linear.weight
>>>> Parameter containing:
    -0.6847  0.2149
    -0.5473  0.6863
    [torch.FloatTensor of size 2x2]

linear_cuda.weight
>>>> Parameter containing:
    -0.6847  0.2149
    -0.5473  0.6863
    [torch.cuda.FloatTensor of size 2x2 (GPU 0)]

 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

3.2 自己模型的迁移

对于自己创建的模型类,由于继承了torch.nn.Module,则可同样使用.cuda()来将模型中用到的所有参数都存储到显存中去。

这里笔者曾经有一个疑问:当我们对模型存储到显存中去之后,那么这个模型中的方法后面所创建出来的Tensor是不是都会默认变成cuda的数据类型。答案是否定的。具体操作留给读者自己去实现。

3.3 模型小结

对于模型而言,我们可以将其看做是一种类似于Variable的容器。我们对它进行.cuda()处理,是将其中的参数放到显存上去(因为实际使用的时候也是通过这些参数做运算)。

4. 总结

Pytorch使用起来直接简单,GPU的使用也是简单明了。然而对于多GPU和CPU的协同使用则还是有待提高。

你可能感兴趣的:(pytorch)