transpose在深度学习中是很常见的一个操作, numpy和pytorch都有对应的操作, 但是内部是如何实现的呢? stackoverflow上有很相信的说明, 这里搬运下.
In [28]: arr = np.arange(16).reshape((2, 2, 4))
In [29]: arr
Out[29]:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
In [32]: arr.transpose((1, 0, 2))
Out[32]:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
在np.array中, 对于三维数组的三个轴的定义如下:
数组内部实现上其实是使用一块连续内存保存数据的,在内存空间里, 这些数据的保存形式:
上图中的64 bytes, 32 bytes, 8bytes,
为0, 1, 2三个轴的stride,换句话说, 在三个轴上取数时要用不同的stride跳跃, 轴0上每增加一位则要跳64bytes, 假如取(i, j, k)位的数arr[i, j, k], 那么可以知道:
# 这里的strides表示的位数,不是byte, 对于上图strides则为[8, 4, 1]
idx = strides[0] * i + strides[1] * j + strides[2] *k
arr[i, j, k] = buffer[idx]
当做arr.transpose(1, 0, 2)
操作时, 需要将每个轴的dim和stride都换下,
strides变化:[64, 32, 8] ----------> [32, 64, 8]
shapes 变化:[2, 2, 4] ----------------> [2, 2, 4]
这样就避免了内存拷贝, transpose几乎无时间消耗.
下面定义一个tensor来实现 transpose, 注意transpose时仅仅对strides, shapes做了顺序交换. 这里的strides表示的element移动个数,而不是bytes.
class Tensor:
def __init__(self, data_lst, shapes):
assert len(shapes) == 3
self.data = data_lst
self.shapes = np.array(list(shapes))
self.strides = np.array([shapes[1] * shapes[2], shapes[2], 1])
def print(self) -> str:
print('(')
for i in range(self.shapes[0]):
print('[', end = '')
for j in range(self.shapes[1]):
print('[', end = '')
for k in range(self.shapes[2]):
idx = i * self.strides[0] + j * self.strides[1] + k * self.strides[2]
print(self.data[idx], ' ', end = '')
print(']', end = '')
print(']')
print(')')
def transpose(self, axes):
assert len(axes) == len(self.shapes)
axes = list(axes)
self.shapes = self.shapes[axes]
self.strides = self.strides[axes]
return self
def numpy(self):
""" convert to numpy array
Returns:
_type_: np.ndarray
"""
n_elements = self.shapes[0] * self.shapes[1] * self.shapes[2]
arr = np.zeros((n_elements,))
target_idx = 0
for i in range(self.shapes[0]):
for j in range(self.shapes[1]):
for k in range(self.shapes[2]):
src_idx = i * self.strides[0] + j * self.strides[1] + k * self.strides[2]
arr[target_idx] = self.data[src_idx]
target_idx += 1
return arr.reshape(self.shapes)
def test_tensor():
axes = [1, 0, 2]
arr = np.arange(16).reshape((2, 2, 4))
t = Tensor(arr.reshape(-1).tolist(), (2, 2, 4))
print('original arr:')
t.print()
print('numpy.transpose:', np.transpose(arr, axes))
ret = t.transpose(axes).numpy()
print('after transpose:', ret)
assert np.allclose(np.transpose(arr, axes), ret)