【目标检测】swin-transformer的模型推理

文章目录

  • 1. 源代码
  • 2. 相关文件
  • 3. 代码
    • 3.1 infer
    • 3.2 mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco

1. 源代码

https://github.com/SwinTransformer/Swin-Transformer-Object-Detection

2. 相关文件

【目标检测】swin-transformer的模型推理_第1张图片

3. 代码

3.1 infer

from mmdet.apis import init_detector, inference_detector, show_result_pyplot
# import mmcv
import numpy as np
import cv2
import random


def InferResult(img, config_file, checkpoint_file, classes, model):
	result = inference_detector(model, img)

	if isinstance(result, tuple):
		bbox_result, segm_result = result
		if isinstance(segm_result, tuple):
			segm_result = segm_result[0]  # ms rcnn
	else:
		bbox_result, segm_result = result, None

	bboxes = np.vstack(bbox_result)
	labels = [
		np.full(bbox.shape[0], i, dtype=np.int32)
		for i, bbox in enumerate(bbox_result)
	]
	labels = np.concatenate(labels)

	assert bboxes.shape[1] == 5
	scores = bboxes[:, -1]
	inds = scores > 0.3
	bboxes = bboxes[inds, :]
	labels = labels[inds]
	# print(bboxes[:, :4])
	# print(bboxes[:, -1:])
	img, result_label = draw(img, bboxes, classes, labels)
	return img, result_label

def plot_one_box(x, img, label=None, color=None, line_thickness=None):
	# Plots one bounding box on image img
	tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
	color = color or [random.randint(0, 255) for _ in range(3)]
	c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
	cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
	if label:
		tf = max(tl - 1, 1)  # font thickness
		t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
		c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
		cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filled
		cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)

# show the results
def draw(img, bboxes, classes, labels):
	img = cv2.imread(img)
	colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))]
	result_label = []
	for i in range(bboxes.shape[0]):
		xyxy = bboxes[i, :4]
		conf = bboxes[i, -1:]
		label = '%s %.2f' % (classes[labels[i]], conf)
		label = '%s' % (classes[labels[i]])
		result_label.append(label)
		plot_one_box(xyxy, img, label=label, color=colors[0], line_thickness=1)
	result_label = list(set(result_label))
	cv2.imshow('test', img)
	cv2.waitKey()
	return img, result_label

if __name__ == '__main__':
	img = '2.jpg'
	# img = cv2.imread('./2.jpg')
	config_file = 'mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco.py'
	checkpoint_file = 'epoch_100.pth'
	classes = ['The color of silica gel is abnormal', 'The color of silica gel is normal', 'The door is open', 'The door is close', 'breakage', 'dirt', 'rust', 'foreign object', 'oil leakage', 'animal', 'hat', 'person']
	model = init_detector(config_file, checkpoint_file, device='cuda:0')
	img, result_label = InferResult(img, config_file, checkpoint_file, classes, model)

3.2 mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco

model = dict(
    type='MaskRCNN',
    pretrained=None,
    backbone=dict(
        type='SwinTransformer',
        embed_dim=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=7,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.1,
        ape=False,
        patch_norm=True,
        out_indices=(0, 1, 2, 3),
        use_checkpoint=False),
    neck=dict(
        type='FPN',
        in_channels=[96, 192, 384, 768],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            scales=[8],
            ratios=[0.5, 1.0, 2.0],
            strides=[4, 8, 16, 32, 64]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[0.0, 0.0, 0.0, 0.0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
    roi_head=dict(
        type='StandardRoIHead',
        bbox_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        bbox_head=dict(
            type='Shared2FCBBoxHead',
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=12,
            bbox_coder=dict(
                type='DeltaXYWHBBoxCoder',
                target_means=[0.0, 0.0, 0.0, 0.0],
                target_stds=[0.1, 0.1, 0.2, 0.2]),
            reg_class_agnostic=False,
            loss_cls=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
        mask_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        mask_head=dict(
            type='FCNMaskHead',
            num_convs=4,
            in_channels=256,
            conv_out_channels=256,
            num_classes=12,
            loss_mask=dict(
                type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
    train_cfg=dict(
        rpn=dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.7,
                neg_iou_thr=0.3,
                min_pos_iou=0.3,
                match_low_quality=True,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=256,
                pos_fraction=0.5,
                neg_pos_ub=-1,
                add_gt_as_proposals=False),
            allowed_border=-1,
            pos_weight=-1,
            debug=False),
        rpn_proposal=dict(
            nms_pre=2000,
            max_per_img=1000,
            nms=dict(type='nms', iou_threshold=0.7),
            min_bbox_size=0),
        rcnn=dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.5,
                neg_iou_thr=0.5,
                min_pos_iou=0.5,
                match_low_quality=True,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=28,
            pos_weight=-1,
            debug=False)),
    test_cfg=dict(
        rpn=dict(
            nms_pre=1000,
            max_per_img=1000,
            nms=dict(type='nms', iou_threshold=0.7),
            min_bbox_size=0),
        rcnn=dict(
            score_thr=0.05,
            nms=dict(type='nms', iou_threshold=0.5),
            max_per_img=100,
            mask_thr_binary=0.5)))
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(
        type='AutoAugment',
        policies=[[{
            'type':
            'Resize',
            'img_scale': [(480, 1333), (512, 1333), (544, 1333), (576, 1333),
                          (608, 1333), (640, 1333), (672, 1333), (704, 1333),
                          (736, 1333), (768, 1333), (800, 1333)],
            'multiscale_mode':
            'value',
            'keep_ratio':
            True
        }],
                  [{
                      'type': 'Resize',
                      'img_scale': [(400, 1333), (500, 1333), (600, 1333)],
                      'multiscale_mode': 'value',
                      'keep_ratio': True
                  }, {
                      'type': 'RandomCrop',
                      'crop_type': 'absolute_range',
                      'crop_size': (384, 600),
                      'allow_negative_crop': True
                  }, {
                      'type':
                      'Resize',
                      'img_scale': [(480, 1333), (512, 1333), (544, 1333),
                                    (576, 1333), (608, 1333), (640, 1333),
                                    (672, 1333), (704, 1333), (736, 1333),
                                    (768, 1333), (800, 1333)],
                      'multiscale_mode':
                      'value',
                      'override':
                      True,
                      'keep_ratio':
                      True
                  }]]),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=3,
    workers_per_gpu=0,
    train=dict(
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_train2017.json',
        img_prefix='data/coco/train2017/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(
                type='AutoAugment',
                policies=[[{
                    'type':
                    'Resize',
                    'img_scale': [(480, 1333), (512, 1333), (544, 1333),
                                  (576, 1333), (608, 1333), (640, 1333),
                                  (672, 1333), (704, 1333), (736, 1333),
                                  (768, 1333), (800, 1333)],
                    'multiscale_mode':
                    'value',
                    'keep_ratio':
                    True
                }],
                          [{
                              'type': 'Resize',
                              'img_scale': [(400, 1333), (500, 1333),
                                            (600, 1333)],
                              'multiscale_mode': 'value',
                              'keep_ratio': True
                          }, {
                              'type': 'RandomCrop',
                              'crop_type': 'absolute_range',
                              'crop_size': (384, 600),
                              'allow_negative_crop': True
                          }, {
                              'type':
                              'Resize',
                              'img_scale': [(480, 1333), (512, 1333),
                                            (544, 1333), (576, 1333),
                                            (608, 1333), (640, 1333),
                                            (672, 1333), (704, 1333),
                                            (736, 1333), (768, 1333),
                                            (800, 1333)],
                              'multiscale_mode':
                              'value',
                              'override':
                              True,
                              'keep_ratio':
                              True
                          }]]),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='DefaultFormatBundle'),
            dict(
                type='Collect',
                keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
        ]),
    val=dict(
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_test2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='DefaultFormatBundle'),
                    dict(type='Collect', keys=['img'])
                ])
        ]))
evaluation = dict(interval=1, metric='bbox')
optimizer = dict(
    type='AdamW',
    lr=0.0001,
    betas=(0.9, 0.999),
    weight_decay=0.05,
    paramwise_cfg=dict(
        custom_keys=dict(
            absolute_pos_embed=dict(decay_mult=0.0),
            relative_position_bias_table=dict(decay_mult=0.0),
            norm=dict(decay_mult=0.0))))
optimizer_config = dict(
    grad_clip=None,
    type='DistOptimizerHook',
    update_interval=1,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True)
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[8, 11])
runner = dict(type='EpochBasedRunnerAmp', max_epochs=100)
checkpoint_config = dict(interval=2)
log_config = dict(interval=10, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = 'mask_rcnn_swin_12.pth'
resume_from = None
workflow = [('train', 1)]
fp16 = None
work_dir = './work_dirs\mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_coco'
gpu_ids = range(0, 1)

你可能感兴趣的:(深度学习,目标检测,pytorch,transformer)