# 一.catboost 模型参数介绍
catboost参数分为 通用参数,性能参数和默认参数三类,由于参数众多,很多参数不重要,只解释部分重要的参数,训练时需要重点考虑的。
1.loss_function 损失函数
支持的有RMSE,
Logloss,
MAE,
CrossEntropy,
Quantile,
LogLinQuantile,
Multiclass,
MultiClassOneVsAll,
MAPE,
Poisson。
默认RMSE。
2.custom_metric
训练过程中输出的度量值。这些功能未经优化,仅出于信息目的显示。支持以下:
RMSE
Logloss
MAE
CrossEntropy
Recall
Precision
F1
Accuracy
AUC
R2
默认None。
3.eval_metric
用于过拟合检验(设置True)和最佳模型选择(设置True)的loss function,用于优化。
4.iterations
最大树数。默认1000。
5.learning_rate
学习率。默认0.03。
6.random_seed
训练时候的随机种子
7.l2_leaf_reg L2
正则参数。默认3
8.bootstrap_type
定义权重计算逻辑,可选参数:Poisson (supported for GPU only)/Bayesian/Bernoulli/No,默认为Bayesian
9.bagging_temperature
贝叶斯套袋控制强度,区间[0, 1]。默认1。
10.subsample
设置样本率,当bootstrap_type为Poisson或Bernoulli时使用,默认66
11.sampling_frequency
设置创建树时的采样频率,可选值PerTree/PerTreeLevel,默认为PerTreeLevel
12.random_strength
分数标准差乘数。默认1。
13.use_best_model
设置此参数时,需要提供测试数据,树的个数通过训练参数和优化loss function获得。默认False。
14.best_model_min_trees
最佳模型应该具有的树的最小数目。
15.depth
树深,最大16,建议在1到10之间。默认6。
16.ignored_features
忽略数据集中的某些特征。默认None。
17.one_hot_max_size
如果feature包含的不同值的数目超过了指定值,将feature转化为float。默认False
18.has_time
在将categorical features转化为numerical
19.features
和选择树结构时,顺序选择输入数据。默认False(随机)
20.rsm
随机子空间(Random subspace method)。默认1。
21.nan_mode
处理输入数据中缺失值的方法,包括:
Forbidden(禁止存在缺失),
Min(用最小值补),
Max(用最大值补)。
默认Min。
22.fold_permutation_block_size
数据集中的对象在随机排列之前按块分组。此参数定义块的大小。值越小,训练越慢。较大的值可能导致质量下降。
23.leaf_estimation_method
计算叶子值的方法,Newton/ Gradient。默认Gradient。
24.leaf_estimation_iterations
计算叶子值时梯度步数。
25.leaf_estimation_backtracking
在梯度下降期间要使用的回溯类型。
26.fold_len_multiplier folds
长度系数。设置大于1的参数,在参数较小时获得最佳结果。默认2。
27.approx_on_full_history
计算近似值,False:使用1/fold_len_multiplier计算;True:使用fold中前面所有行计算。默认False。
28.class_weights
类别的权重。默认None。
29.scale_pos_weight
二进制分类中class 1的权重。该值用作class 1中对象权重的乘数。
30.boosting_type
增压方案
31.allow_const_label
使用它为所有对象训练具有相同标签值的数据集的模型。默认为False
1.thread_count=-1:
训练时所用的cpu/gpu核数
2.used_ram_limit=None:
CTR问题,计算时的内存限制
3.gpu_ram_part=None:
GPU内存限制
CatBoost默认参数:
‘iterations’: 1000,
‘learning_rate’:0.03,
‘l2_leaf_reg’:3,
‘bagging_temperature’:1,
‘subsample’:0.66,
‘random_strength’:1,
‘depth’:6,
‘rsm’:1,
‘one_hot_max_size’:2
‘leaf_estimation_method’:’Gradient’,
‘fold_len_multiplier’:2,
‘border_count’:128,
X: 输入数据数据类型可以是,list; pandas.DataFrame; pandas.Series
y=None
cat_features=None: 拿来做处理的类别特征
sample_weight=None: 输入数据的样本权重
logging_level=None: 控制是否输出日志信息,或者何种信息
plot=False: 训练过程中,绘制,度量值,所用时间等
eval_set=None: 验证集合,数据类型list(X, y)tuples
baseline=None
use_best_model=None
verbose=None
import pandas as pd, numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn import metrics
import catboost as cb
import os
import joblib
data=pd.read_excel(r'D:\Ensemble_Learning\car_coupon01.xlsx')
data.head(5)
ID | destination | passanger | toCoupon_GEQ15min | toCoupon_GEQ25min | direction_same | direction_opp | gender | age | maritalStatus | ... | Bar | CoffeeHouse | CarryAway | RestaurantLessThan20 | Restaurant20To50 | weather | time | coupon | expiration | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 11263 | No Urgent Place | Friend(s) | 0 | 0 | 0 | 1 | Male | 50plus | Widowed | ... | never | never | less1 | 1~3 | less1 | Sunny | 2PM | Coffee House | 1d | 1 |
1 | 20136 | Work | Alone | 1 | 0 | 1 | 0 | Female | 26 | Married partner | ... | never | never | 1~3 | 4~8 | less1 | Sunny | 7AM | Bar | 1d | 0 |
2 | 14763 | Work | Alone | 1 | 0 | 0 | 1 | Female | 50plus | Single | ... | never | never | less1 | 4~8 | less1 | Sunny | 7AM | Coffee House | 1d | 0 |
3 | 12612 | No Urgent Place | Kid(s) | 1 | 0 | 0 | 1 | Female | 41 | Married partner | ... | never | 1~3 | 1~3 | 1~3 | less1 | Sunny | 10AM | Carry out & Take away | 2h | 0 |
4 | 17850 | No Urgent Place | Partner | 1 | 0 | 0 | 1 | Female | 31 | Married partner | ... | less1 | less1 | gt8 | 4~8 | less1 | Snowy | 2PM | Coffee House | 2h | 0 |
5 rows × 23 columns
设置id
data.set_index('ID',inplace=True)
指定分类变量的行索引
cat_features_index = [0, 1, 6,7, 8,9,10,11,12,13,14,15,16,17,18,19,20]
#填充数据
data.fillna(-999,inplace=True)
#划分训练集和测试结合
train, test, y_train, y_test = train_test_split(data.drop(["Y"], axis=1), data["Y"],
random_state=10, test_size=0.3)
def model_eval(m, train, test):
print('train_roc_auc_score:',metrics.roc_auc_score(y_train, m.predict_proba(train)[:, 1]))
print('test_roc_auc_score:',metrics.roc_auc_score(y_test, m.predict_proba(test)[:, 1]))
print('train_accuracy_score:',metrics.accuracy_score(y_train, m.predict(train)))
print('test_accuracy_score:',metrics.accuracy_score(y_test, m.predict(test)))
print('train_precision_score:',metrics.precision_score(y_train, m.predict(train)))
print('test__precision_score:',metrics.precision_score(y_test, m.predict(test)))
print('train_recall_score:',metrics.recall_score(y_train, m.predict(train)))
print('test_recall_score:',metrics.recall_score(y_test, m.predict(test)))
print('train_f1_score:',metrics.f1_score(y_train, m.predict(train)))
print('test_f1_score:',metrics.f1_score(y_test, m.predict(test)))
clf = cb.CatBoostClassifier(eval_metric='Accuracy', one_hot_max_size=25, depth=7,
l2_leaf_reg=10,min_data_in_leaf=30,penalties_coefficient=15,
subsample=0.55, colsample_bylevel=0.58,iterations=800,
ctr_leaf_count_limit=200,
learning_rate=0.15,random_seed=11)
clf.fit(train, y_train, cat_features=cat_features_index)
0: learn: 0.6821429 total: 145ms remaining: 1m 56s
1: learn: 0.7114286 total: 147ms remaining: 58.6s
2: learn: 0.7078571 total: 148ms remaining: 39.3s
3: learn: 0.7164286 total: 149ms remaining: 29.7s
4: learn: 0.7485714 total: 150ms remaining: 23.9s
5: learn: 0.7521429 total: 152ms remaining: 20.1s
6: learn: 0.7585714 total: 153ms remaining: 17.3s
7: learn: 0.7564286 total: 154ms remaining: 15.3s
8: learn: 0.7707143 total: 155ms remaining: 13.6s
9: learn: 0.7707143 total: 157ms remaining: 12.4s
10: learn: 0.7764286 total: 158ms remaining: 11.3s
11: learn: 0.7950000 total: 159ms remaining: 10.4s
12: learn: 0.8007143 total: 160ms remaining: 9.7s
13: learn: 0.8107143 total: 162ms remaining: 9.07s
14: learn: 0.8114286 total: 163ms remaining: 8.52s
15: learn: 0.8114286 total: 164ms remaining: 8.03s
16: learn: 0.8142857 total: 165ms remaining: 7.61s
17: learn: 0.8185714 total: 166ms remaining: 7.22s
18: learn: 0.8221429 total: 168ms remaining: 6.89s
19: learn: 0.8257143 total: 168ms remaining: 6.57s
20: learn: 0.8257143 total: 170ms remaining: 6.29s
21: learn: 0.8285714 total: 171ms remaining: 6.04s
22: learn: 0.8285714 total: 172ms remaining: 5.81s
23: learn: 0.8271429 total: 173ms remaining: 5.6s
24: learn: 0.8307143 total: 175ms remaining: 5.41s
25: learn: 0.8335714 total: 176ms remaining: 5.24s
26: learn: 0.8378571 total: 177ms remaining: 5.07s
27: learn: 0.8392857 total: 178ms remaining: 4.91s
28: learn: 0.8414286 total: 179ms remaining: 4.77s
29: learn: 0.8428571 total: 180ms remaining: 4.63s
30: learn: 0.8492857 total: 182ms remaining: 4.5s
31: learn: 0.8500000 total: 183ms remaining: 4.39s
32: learn: 0.8492857 total: 184ms remaining: 4.28s
33: learn: 0.8528571 total: 186ms remaining: 4.18s
34: learn: 0.8500000 total: 187ms remaining: 4.09s
35: learn: 0.8542857 total: 188ms remaining: 4s
36: learn: 0.8600000 total: 190ms remaining: 3.91s
37: learn: 0.8614286 total: 191ms remaining: 3.83s
38: learn: 0.8600000 total: 192ms remaining: 3.75s
39: learn: 0.8635714 total: 193ms remaining: 3.67s
40: learn: 0.8628571 total: 195ms remaining: 3.6s
41: learn: 0.8650000 total: 196ms remaining: 3.53s
42: learn: 0.8650000 total: 197ms remaining: 3.47s
43: learn: 0.8678571 total: 198ms remaining: 3.41s
44: learn: 0.8664286 total: 200ms remaining: 3.35s
45: learn: 0.8635714 total: 201ms remaining: 3.29s
46: learn: 0.8657143 total: 202ms remaining: 3.23s
47: learn: 0.8700000 total: 203ms remaining: 3.18s
48: learn: 0.8728571 total: 204ms remaining: 3.13s
49: learn: 0.8742857 total: 206ms remaining: 3.08s
50: learn: 0.8814286 total: 207ms remaining: 3.04s
51: learn: 0.8835714 total: 208ms remaining: 2.99s
52: learn: 0.8835714 total: 209ms remaining: 2.95s
53: learn: 0.8857143 total: 210ms remaining: 2.9s
54: learn: 0.8842857 total: 211ms remaining: 2.86s
55: learn: 0.8835714 total: 213ms remaining: 2.83s
56: learn: 0.8871429 total: 214ms remaining: 2.79s
57: learn: 0.8885714 total: 215ms remaining: 2.75s
58: learn: 0.8900000 total: 216ms remaining: 2.71s
59: learn: 0.8978571 total: 218ms remaining: 2.68s
60: learn: 0.9021429 total: 219ms remaining: 2.65s
61: learn: 0.9042857 total: 220ms remaining: 2.62s
62: learn: 0.9064286 total: 221ms remaining: 2.59s
63: learn: 0.9064286 total: 223ms remaining: 2.56s
64: learn: 0.9078571 total: 224ms remaining: 2.53s
65: learn: 0.9121429 total: 225ms remaining: 2.5s
66: learn: 0.9107143 total: 226ms remaining: 2.48s
67: learn: 0.9135714 total: 228ms remaining: 2.45s
68: learn: 0.9135714 total: 229ms remaining: 2.42s
69: learn: 0.9185714 total: 230ms remaining: 2.4s
70: learn: 0.9185714 total: 231ms remaining: 2.37s
71: learn: 0.9250000 total: 232ms remaining: 2.35s
72: learn: 0.9250000 total: 234ms remaining: 2.33s
73: learn: 0.9307143 total: 235ms remaining: 2.3s
74: learn: 0.9335714 total: 236ms remaining: 2.28s
75: learn: 0.9342857 total: 237ms remaining: 2.26s
76: learn: 0.9335714 total: 238ms remaining: 2.24s
77: learn: 0.9328571 total: 240ms remaining: 2.22s
78: learn: 0.9328571 total: 241ms remaining: 2.2s
79: learn: 0.9371429 total: 242ms remaining: 2.18s
80: learn: 0.9378571 total: 243ms remaining: 2.16s
81: learn: 0.9378571 total: 245ms remaining: 2.14s
82: learn: 0.9414286 total: 246ms remaining: 2.13s
83: learn: 0.9421429 total: 247ms remaining: 2.11s
84: learn: 0.9428571 total: 248ms remaining: 2.09s
85: learn: 0.9428571 total: 250ms remaining: 2.07s
86: learn: 0.9450000 total: 251ms remaining: 2.06s
87: learn: 0.9464286 total: 252ms remaining: 2.04s
88: learn: 0.9450000 total: 253ms remaining: 2.02s
89: learn: 0.9471429 total: 254ms remaining: 2.01s
90: learn: 0.9471429 total: 256ms remaining: 1.99s
91: learn: 0.9464286 total: 257ms remaining: 1.98s
92: learn: 0.9478571 total: 258ms remaining: 1.96s
93: learn: 0.9485714 total: 259ms remaining: 1.95s
94: learn: 0.9478571 total: 260ms remaining: 1.93s
95: learn: 0.9500000 total: 262ms remaining: 1.92s
96: learn: 0.9507143 total: 263ms remaining: 1.9s
97: learn: 0.9507143 total: 264ms remaining: 1.89s
98: learn: 0.9500000 total: 265ms remaining: 1.88s
99: learn: 0.9507143 total: 266ms remaining: 1.86s
100: learn: 0.9514286 total: 268ms remaining: 1.85s
101: learn: 0.9571429 total: 269ms remaining: 1.84s
102: learn: 0.9592857 total: 270ms remaining: 1.83s
103: learn: 0.9621429 total: 271ms remaining: 1.81s
104: learn: 0.9628571 total: 273ms remaining: 1.8s
105: learn: 0.9628571 total: 274ms remaining: 1.79s
106: learn: 0.9657143 total: 275ms remaining: 1.78s
107: learn: 0.9657143 total: 276ms remaining: 1.77s
108: learn: 0.9664286 total: 277ms remaining: 1.76s
109: learn: 0.9671429 total: 279ms remaining: 1.75s
110: learn: 0.9671429 total: 280ms remaining: 1.74s
111: learn: 0.9671429 total: 281ms remaining: 1.73s
112: learn: 0.9678571 total: 282ms remaining: 1.72s
113: learn: 0.9692857 total: 284ms remaining: 1.71s
114: learn: 0.9707143 total: 285ms remaining: 1.7s
115: learn: 0.9714286 total: 286ms remaining: 1.69s
116: learn: 0.9714286 total: 287ms remaining: 1.68s
117: learn: 0.9728571 total: 289ms remaining: 1.67s
118: learn: 0.9750000 total: 290ms remaining: 1.66s
119: learn: 0.9757143 total: 291ms remaining: 1.65s
120: learn: 0.9757143 total: 292ms remaining: 1.64s
121: learn: 0.9764286 total: 293ms remaining: 1.63s
122: learn: 0.9757143 total: 295ms remaining: 1.62s
123: learn: 0.9764286 total: 296ms remaining: 1.61s
124: learn: 0.9771429 total: 297ms remaining: 1.6s
125: learn: 0.9771429 total: 298ms remaining: 1.6s
126: learn: 0.9778571 total: 300ms remaining: 1.59s
127: learn: 0.9771429 total: 301ms remaining: 1.58s
128: learn: 0.9778571 total: 302ms remaining: 1.57s
129: learn: 0.9771429 total: 303ms remaining: 1.56s
130: learn: 0.9771429 total: 305ms remaining: 1.56s
131: learn: 0.9778571 total: 306ms remaining: 1.55s
132: learn: 0.9785714 total: 307ms remaining: 1.54s
133: learn: 0.9785714 total: 308ms remaining: 1.53s
134: learn: 0.9792857 total: 309ms remaining: 1.52s
135: learn: 0.9785714 total: 311ms remaining: 1.52s
136: learn: 0.9792857 total: 312ms remaining: 1.51s
137: learn: 0.9792857 total: 313ms remaining: 1.5s
138: learn: 0.9800000 total: 314ms remaining: 1.49s
139: learn: 0.9814286 total: 315ms remaining: 1.49s
140: learn: 0.9814286 total: 318ms remaining: 1.49s
141: learn: 0.9821429 total: 319ms remaining: 1.48s
142: learn: 0.9842857 total: 321ms remaining: 1.47s
143: learn: 0.9835714 total: 322ms remaining: 1.47s
144: learn: 0.9857143 total: 323ms remaining: 1.46s
145: learn: 0.9871429 total: 324ms remaining: 1.45s
146: learn: 0.9857143 total: 326ms remaining: 1.45s
147: learn: 0.9864286 total: 327ms remaining: 1.44s
148: learn: 0.9885714 total: 329ms remaining: 1.44s
149: learn: 0.9878571 total: 330ms remaining: 1.43s
150: learn: 0.9885714 total: 332ms remaining: 1.43s
151: learn: 0.9892857 total: 333ms remaining: 1.42s
152: learn: 0.9885714 total: 334ms remaining: 1.41s
153: learn: 0.9892857 total: 336ms remaining: 1.41s
154: learn: 0.9892857 total: 338ms remaining: 1.41s
155: learn: 0.9885714 total: 339ms remaining: 1.4s
156: learn: 0.9885714 total: 341ms remaining: 1.39s
157: learn: 0.9878571 total: 342ms remaining: 1.39s
158: learn: 0.9878571 total: 343ms remaining: 1.38s
159: learn: 0.9900000 total: 345ms remaining: 1.38s
160: learn: 0.9907143 total: 346ms remaining: 1.37s
161: learn: 0.9907143 total: 347ms remaining: 1.37s
162: learn: 0.9935714 total: 349ms remaining: 1.36s
163: learn: 0.9942857 total: 350ms remaining: 1.36s
164: learn: 0.9935714 total: 352ms remaining: 1.35s
165: learn: 0.9950000 total: 353ms remaining: 1.35s
166: learn: 0.9950000 total: 354ms remaining: 1.34s
167: learn: 0.9950000 total: 355ms remaining: 1.34s
168: learn: 0.9950000 total: 357ms remaining: 1.33s
169: learn: 0.9957143 total: 358ms remaining: 1.33s
170: learn: 0.9957143 total: 359ms remaining: 1.32s
171: learn: 0.9957143 total: 360ms remaining: 1.32s
172: learn: 0.9957143 total: 362ms remaining: 1.31s
173: learn: 0.9957143 total: 363ms remaining: 1.3s
174: learn: 0.9957143 total: 364ms remaining: 1.3s
175: learn: 0.9957143 total: 365ms remaining: 1.29s
176: learn: 0.9957143 total: 367ms remaining: 1.29s
177: learn: 0.9957143 total: 368ms remaining: 1.28s
178: learn: 0.9957143 total: 369ms remaining: 1.28s
179: learn: 0.9957143 total: 370ms remaining: 1.27s
180: learn: 0.9957143 total: 371ms remaining: 1.27s
181: learn: 0.9957143 total: 373ms remaining: 1.26s
182: learn: 0.9971429 total: 374ms remaining: 1.26s
183: learn: 0.9971429 total: 375ms remaining: 1.25s
184: learn: 0.9971429 total: 376ms remaining: 1.25s
185: learn: 0.9964286 total: 377ms remaining: 1.25s
186: learn: 0.9964286 total: 379ms remaining: 1.24s
187: learn: 0.9964286 total: 380ms remaining: 1.24s
188: learn: 0.9964286 total: 381ms remaining: 1.23s
189: learn: 0.9964286 total: 382ms remaining: 1.23s
190: learn: 0.9971429 total: 384ms remaining: 1.22s
191: learn: 0.9971429 total: 385ms remaining: 1.22s
192: learn: 0.9971429 total: 386ms remaining: 1.21s
193: learn: 0.9971429 total: 387ms remaining: 1.21s
194: learn: 0.9971429 total: 389ms remaining: 1.21s
195: learn: 0.9971429 total: 390ms remaining: 1.2s
196: learn: 0.9971429 total: 391ms remaining: 1.2s
197: learn: 0.9971429 total: 392ms remaining: 1.19s
198: learn: 0.9971429 total: 393ms remaining: 1.19s
199: learn: 0.9971429 total: 394ms remaining: 1.18s
200: learn: 0.9971429 total: 396ms remaining: 1.18s
201: learn: 0.9971429 total: 397ms remaining: 1.18s
202: learn: 0.9971429 total: 398ms remaining: 1.17s
203: learn: 0.9971429 total: 399ms remaining: 1.17s
204: learn: 0.9978571 total: 401ms remaining: 1.16s
205: learn: 0.9978571 total: 402ms remaining: 1.16s
206: learn: 0.9978571 total: 403ms remaining: 1.15s
207: learn: 0.9971429 total: 404ms remaining: 1.15s
208: learn: 0.9978571 total: 405ms remaining: 1.15s
209: learn: 0.9978571 total: 407ms remaining: 1.14s
210: learn: 0.9978571 total: 408ms remaining: 1.14s
211: learn: 0.9978571 total: 409ms remaining: 1.13s
212: learn: 0.9985714 total: 410ms remaining: 1.13s
213: learn: 0.9978571 total: 412ms remaining: 1.13s
214: learn: 0.9978571 total: 413ms remaining: 1.12s
215: learn: 0.9978571 total: 414ms remaining: 1.12s
216: learn: 0.9978571 total: 415ms remaining: 1.12s
217: learn: 0.9978571 total: 417ms remaining: 1.11s
218: learn: 0.9978571 total: 418ms remaining: 1.11s
219: learn: 0.9978571 total: 419ms remaining: 1.1s
220: learn: 0.9978571 total: 420ms remaining: 1.1s
221: learn: 0.9978571 total: 422ms remaining: 1.1s
222: learn: 0.9978571 total: 423ms remaining: 1.09s
223: learn: 0.9978571 total: 424ms remaining: 1.09s
224: learn: 0.9978571 total: 425ms remaining: 1.09s
225: learn: 0.9978571 total: 427ms remaining: 1.08s
226: learn: 0.9978571 total: 428ms remaining: 1.08s
227: learn: 0.9978571 total: 429ms remaining: 1.08s
228: learn: 0.9985714 total: 430ms remaining: 1.07s
229: learn: 0.9985714 total: 432ms remaining: 1.07s
230: learn: 0.9985714 total: 433ms remaining: 1.06s
231: learn: 0.9978571 total: 434ms remaining: 1.06s
232: learn: 0.9985714 total: 435ms remaining: 1.06s
233: learn: 0.9985714 total: 436ms remaining: 1.05s
234: learn: 0.9985714 total: 438ms remaining: 1.05s
235: learn: 0.9985714 total: 439ms remaining: 1.05s
236: learn: 0.9985714 total: 440ms remaining: 1.04s
237: learn: 0.9985714 total: 441ms remaining: 1.04s
238: learn: 0.9985714 total: 442ms remaining: 1.04s
239: learn: 0.9985714 total: 444ms remaining: 1.03s
240: learn: 0.9992857 total: 445ms remaining: 1.03s
241: learn: 0.9992857 total: 446ms remaining: 1.03s
242: learn: 0.9992857 total: 447ms remaining: 1.02s
243: learn: 0.9992857 total: 448ms remaining: 1.02s
244: learn: 0.9992857 total: 449ms remaining: 1.02s
245: learn: 0.9992857 total: 451ms remaining: 1.01s
246: learn: 0.9992857 total: 452ms remaining: 1.01s
247: learn: 0.9992857 total: 453ms remaining: 1.01s
248: learn: 0.9992857 total: 454ms remaining: 1s
249: learn: 0.9992857 total: 455ms remaining: 1s
250: learn: 0.9992857 total: 457ms remaining: 999ms
251: learn: 0.9992857 total: 458ms remaining: 996ms
252: learn: 0.9992857 total: 459ms remaining: 993ms
253: learn: 0.9992857 total: 460ms remaining: 990ms
254: learn: 0.9992857 total: 462ms remaining: 987ms
255: learn: 0.9992857 total: 463ms remaining: 984ms
256: learn: 0.9992857 total: 464ms remaining: 981ms
257: learn: 0.9992857 total: 465ms remaining: 978ms
258: learn: 0.9992857 total: 467ms remaining: 975ms
259: learn: 0.9992857 total: 468ms remaining: 971ms
260: learn: 0.9992857 total: 469ms remaining: 968ms
261: learn: 0.9992857 total: 470ms remaining: 965ms
262: learn: 0.9992857 total: 471ms remaining: 963ms
263: learn: 0.9992857 total: 473ms remaining: 960ms
264: learn: 0.9992857 total: 474ms remaining: 957ms
265: learn: 0.9992857 total: 475ms remaining: 954ms
266: learn: 0.9992857 total: 476ms remaining: 951ms
267: learn: 0.9992857 total: 478ms remaining: 948ms
268: learn: 0.9992857 total: 479ms remaining: 945ms
269: learn: 0.9992857 total: 480ms remaining: 943ms
270: learn: 0.9992857 total: 481ms remaining: 940ms
271: learn: 0.9992857 total: 482ms remaining: 937ms
272: learn: 0.9992857 total: 484ms remaining: 934ms
273: learn: 0.9992857 total: 485ms remaining: 931ms
274: learn: 0.9992857 total: 486ms remaining: 928ms
275: learn: 0.9992857 total: 487ms remaining: 925ms
276: learn: 0.9992857 total: 488ms remaining: 922ms
277: learn: 0.9992857 total: 489ms remaining: 919ms
278: learn: 0.9992857 total: 491ms remaining: 916ms
279: learn: 0.9992857 total: 492ms remaining: 914ms
280: learn: 0.9992857 total: 493ms remaining: 911ms
281: learn: 0.9992857 total: 495ms remaining: 908ms
282: learn: 0.9992857 total: 496ms remaining: 906ms
283: learn: 0.9992857 total: 497ms remaining: 903ms
284: learn: 0.9992857 total: 498ms remaining: 900ms
285: learn: 0.9992857 total: 500ms remaining: 898ms
286: learn: 0.9992857 total: 501ms remaining: 895ms
287: learn: 0.9992857 total: 502ms remaining: 892ms
288: learn: 0.9992857 total: 503ms remaining: 890ms
289: learn: 0.9992857 total: 505ms remaining: 887ms
290: learn: 0.9992857 total: 506ms remaining: 885ms
291: learn: 0.9992857 total: 507ms remaining: 883ms
292: learn: 0.9992857 total: 509ms remaining: 880ms
293: learn: 0.9992857 total: 510ms remaining: 878ms
294: learn: 0.9992857 total: 511ms remaining: 875ms
295: learn: 0.9992857 total: 513ms remaining: 873ms
296: learn: 0.9992857 total: 514ms remaining: 871ms
297: learn: 0.9992857 total: 515ms remaining: 868ms
298: learn: 0.9992857 total: 517ms remaining: 866ms
299: learn: 0.9992857 total: 518ms remaining: 864ms
300: learn: 0.9992857 total: 519ms remaining: 861ms
301: learn: 0.9992857 total: 521ms remaining: 858ms
302: learn: 0.9992857 total: 522ms remaining: 856ms
303: learn: 0.9992857 total: 523ms remaining: 853ms
304: learn: 0.9992857 total: 524ms remaining: 851ms
305: learn: 0.9992857 total: 526ms remaining: 849ms
306: learn: 0.9992857 total: 527ms remaining: 846ms
307: learn: 0.9992857 total: 528ms remaining: 843ms
308: learn: 0.9992857 total: 529ms remaining: 841ms
309: learn: 0.9992857 total: 530ms remaining: 838ms
310: learn: 0.9992857 total: 532ms remaining: 836ms
311: learn: 0.9992857 total: 533ms remaining: 833ms
312: learn: 0.9992857 total: 534ms remaining: 831ms
313: learn: 0.9992857 total: 535ms remaining: 829ms
314: learn: 0.9992857 total: 537ms remaining: 826ms
315: learn: 0.9992857 total: 538ms remaining: 824ms
316: learn: 0.9992857 total: 539ms remaining: 822ms
317: learn: 0.9992857 total: 541ms remaining: 819ms
318: learn: 0.9992857 total: 542ms remaining: 817ms
319: learn: 0.9992857 total: 543ms remaining: 814ms
320: learn: 0.9992857 total: 544ms remaining: 812ms
321: learn: 0.9992857 total: 545ms remaining: 809ms
322: learn: 0.9992857 total: 547ms remaining: 807ms
323: learn: 0.9992857 total: 548ms remaining: 805ms
324: learn: 0.9992857 total: 549ms remaining: 802ms
325: learn: 0.9992857 total: 550ms remaining: 800ms
326: learn: 0.9992857 total: 551ms remaining: 798ms
327: learn: 0.9992857 total: 553ms remaining: 795ms
328: learn: 0.9992857 total: 554ms remaining: 793ms
329: learn: 0.9992857 total: 555ms remaining: 790ms
330: learn: 0.9992857 total: 556ms remaining: 788ms
331: learn: 0.9992857 total: 557ms remaining: 786ms
332: learn: 0.9992857 total: 559ms remaining: 783ms
333: learn: 0.9992857 total: 560ms remaining: 781ms
334: learn: 0.9992857 total: 561ms remaining: 779ms
335: learn: 0.9992857 total: 562ms remaining: 777ms
336: learn: 0.9992857 total: 564ms remaining: 774ms
337: learn: 0.9992857 total: 565ms remaining: 772ms
338: learn: 0.9992857 total: 566ms remaining: 770ms
339: learn: 0.9992857 total: 567ms remaining: 767ms
340: learn: 0.9992857 total: 568ms remaining: 765ms
341: learn: 0.9992857 total: 570ms remaining: 763ms
342: learn: 0.9992857 total: 571ms remaining: 761ms
343: learn: 0.9992857 total: 572ms remaining: 759ms
344: learn: 0.9992857 total: 573ms remaining: 756ms
345: learn: 0.9992857 total: 575ms remaining: 754ms
346: learn: 0.9992857 total: 576ms remaining: 752ms
347: learn: 0.9992857 total: 577ms remaining: 750ms
348: learn: 0.9992857 total: 579ms remaining: 748ms
349: learn: 0.9992857 total: 580ms remaining: 745ms
350: learn: 0.9992857 total: 581ms remaining: 743ms
351: learn: 0.9992857 total: 582ms remaining: 741ms
352: learn: 0.9992857 total: 583ms remaining: 739ms
353: learn: 0.9992857 total: 585ms remaining: 737ms
354: learn: 0.9992857 total: 586ms remaining: 734ms
355: learn: 0.9992857 total: 587ms remaining: 732ms
356: learn: 0.9992857 total: 588ms remaining: 730ms
357: learn: 0.9992857 total: 590ms remaining: 728ms
358: learn: 0.9992857 total: 591ms remaining: 726ms
359: learn: 0.9992857 total: 592ms remaining: 724ms
360: learn: 0.9992857 total: 593ms remaining: 721ms
361: learn: 0.9992857 total: 594ms remaining: 719ms
362: learn: 0.9992857 total: 596ms remaining: 717ms
363: learn: 0.9992857 total: 597ms remaining: 715ms
364: learn: 0.9992857 total: 598ms remaining: 713ms
365: learn: 0.9992857 total: 599ms remaining: 711ms
366: learn: 0.9992857 total: 600ms remaining: 708ms
367: learn: 0.9992857 total: 602ms remaining: 706ms
368: learn: 0.9992857 total: 603ms remaining: 704ms
369: learn: 0.9992857 total: 604ms remaining: 702ms
370: learn: 0.9992857 total: 605ms remaining: 700ms
371: learn: 0.9992857 total: 606ms remaining: 698ms
372: learn: 0.9992857 total: 608ms remaining: 695ms
373: learn: 0.9992857 total: 609ms remaining: 693ms
374: learn: 0.9992857 total: 610ms remaining: 691ms
375: learn: 0.9992857 total: 611ms remaining: 689ms
376: learn: 0.9992857 total: 612ms remaining: 687ms
377: learn: 0.9992857 total: 614ms remaining: 685ms
378: learn: 0.9992857 total: 615ms remaining: 683ms
379: learn: 0.9992857 total: 616ms remaining: 681ms
380: learn: 0.9992857 total: 617ms remaining: 679ms
381: learn: 0.9992857 total: 619ms remaining: 677ms
382: learn: 0.9992857 total: 620ms remaining: 675ms
383: learn: 0.9992857 total: 621ms remaining: 673ms
384: learn: 0.9992857 total: 622ms remaining: 671ms
385: learn: 0.9992857 total: 623ms remaining: 669ms
386: learn: 0.9992857 total: 625ms remaining: 667ms
387: learn: 0.9992857 total: 626ms remaining: 665ms
388: learn: 0.9992857 total: 627ms remaining: 662ms
389: learn: 0.9992857 total: 628ms remaining: 661ms
390: learn: 0.9992857 total: 630ms remaining: 659ms
391: learn: 0.9992857 total: 631ms remaining: 656ms
392: learn: 0.9992857 total: 632ms remaining: 655ms
393: learn: 0.9992857 total: 633ms remaining: 653ms
394: learn: 0.9992857 total: 634ms remaining: 651ms
395: learn: 0.9992857 total: 636ms remaining: 648ms
396: learn: 0.9992857 total: 637ms remaining: 647ms
397: learn: 0.9992857 total: 638ms remaining: 645ms
398: learn: 0.9992857 total: 639ms remaining: 642ms
399: learn: 0.9992857 total: 641ms remaining: 641ms
400: learn: 0.9992857 total: 642ms remaining: 638ms
401: learn: 0.9992857 total: 643ms remaining: 637ms
402: learn: 0.9992857 total: 644ms remaining: 634ms
403: learn: 0.9992857 total: 645ms remaining: 633ms
404: learn: 0.9992857 total: 647ms remaining: 631ms
405: learn: 0.9992857 total: 648ms remaining: 629ms
406: learn: 0.9992857 total: 649ms remaining: 627ms
407: learn: 0.9992857 total: 650ms remaining: 625ms
408: learn: 0.9992857 total: 652ms remaining: 623ms
409: learn: 0.9992857 total: 653ms remaining: 621ms
410: learn: 0.9992857 total: 654ms remaining: 619ms
411: learn: 0.9992857 total: 655ms remaining: 617ms
412: learn: 0.9992857 total: 657ms remaining: 615ms
413: learn: 0.9992857 total: 658ms remaining: 613ms
414: learn: 0.9992857 total: 659ms remaining: 611ms
415: learn: 0.9992857 total: 660ms remaining: 609ms
416: learn: 0.9992857 total: 661ms remaining: 607ms
417: learn: 0.9992857 total: 663ms remaining: 606ms
418: learn: 0.9992857 total: 664ms remaining: 604ms
419: learn: 0.9992857 total: 665ms remaining: 602ms
420: learn: 0.9992857 total: 667ms remaining: 600ms
421: learn: 0.9992857 total: 668ms remaining: 598ms
422: learn: 0.9992857 total: 669ms remaining: 597ms
423: learn: 0.9992857 total: 671ms remaining: 595ms
424: learn: 0.9992857 total: 672ms remaining: 593ms
425: learn: 0.9992857 total: 673ms remaining: 591ms
426: learn: 0.9992857 total: 674ms remaining: 589ms
427: learn: 0.9992857 total: 676ms remaining: 587ms
428: learn: 0.9992857 total: 677ms remaining: 586ms
429: learn: 0.9992857 total: 679ms remaining: 584ms
430: learn: 0.9992857 total: 680ms remaining: 582ms
431: learn: 0.9992857 total: 681ms remaining: 580ms
432: learn: 0.9992857 total: 683ms remaining: 579ms
433: learn: 0.9992857 total: 684ms remaining: 577ms
434: learn: 0.9992857 total: 685ms remaining: 575ms
435: learn: 0.9992857 total: 686ms remaining: 573ms
436: learn: 0.9992857 total: 688ms remaining: 571ms
437: learn: 0.9992857 total: 689ms remaining: 569ms
438: learn: 0.9992857 total: 690ms remaining: 567ms
439: learn: 0.9992857 total: 691ms remaining: 566ms
440: learn: 0.9992857 total: 693ms remaining: 564ms
441: learn: 0.9992857 total: 694ms remaining: 562ms
442: learn: 0.9992857 total: 695ms remaining: 560ms
443: learn: 0.9992857 total: 696ms remaining: 558ms
444: learn: 0.9992857 total: 698ms remaining: 556ms
445: learn: 0.9992857 total: 699ms remaining: 555ms
446: learn: 0.9992857 total: 700ms remaining: 553ms
447: learn: 0.9992857 total: 701ms remaining: 551ms
448: learn: 0.9992857 total: 702ms remaining: 549ms
449: learn: 0.9992857 total: 704ms remaining: 547ms
450: learn: 0.9992857 total: 705ms remaining: 545ms
451: learn: 0.9992857 total: 706ms remaining: 544ms
452: learn: 0.9992857 total: 707ms remaining: 542ms
453: learn: 0.9992857 total: 708ms remaining: 540ms
454: learn: 0.9992857 total: 710ms remaining: 538ms
455: learn: 0.9992857 total: 711ms remaining: 536ms
456: learn: 0.9992857 total: 712ms remaining: 534ms
457: learn: 0.9992857 total: 713ms remaining: 533ms
458: learn: 0.9992857 total: 714ms remaining: 531ms
459: learn: 0.9992857 total: 716ms remaining: 529ms
460: learn: 0.9992857 total: 717ms remaining: 527ms
461: learn: 0.9992857 total: 718ms remaining: 526ms
462: learn: 0.9992857 total: 720ms remaining: 524ms
463: learn: 0.9992857 total: 721ms remaining: 522ms
464: learn: 0.9992857 total: 722ms remaining: 520ms
465: learn: 0.9992857 total: 723ms remaining: 518ms
466: learn: 0.9992857 total: 724ms remaining: 516ms
467: learn: 0.9992857 total: 726ms remaining: 515ms
468: learn: 0.9992857 total: 727ms remaining: 513ms
469: learn: 0.9992857 total: 728ms remaining: 511ms
470: learn: 0.9992857 total: 729ms remaining: 510ms
471: learn: 0.9992857 total: 731ms remaining: 508ms
472: learn: 0.9992857 total: 732ms remaining: 506ms
473: learn: 0.9992857 total: 733ms remaining: 504ms
474: learn: 0.9992857 total: 734ms remaining: 502ms
475: learn: 0.9992857 total: 736ms remaining: 501ms
476: learn: 0.9992857 total: 737ms remaining: 499ms
477: learn: 0.9992857 total: 738ms remaining: 497ms
478: learn: 0.9992857 total: 739ms remaining: 495ms
479: learn: 0.9992857 total: 740ms remaining: 494ms
480: learn: 0.9992857 total: 742ms remaining: 492ms
481: learn: 0.9992857 total: 743ms remaining: 490ms
482: learn: 0.9992857 total: 744ms remaining: 488ms
483: learn: 0.9992857 total: 745ms remaining: 487ms
484: learn: 0.9992857 total: 747ms remaining: 485ms
485: learn: 0.9992857 total: 748ms remaining: 483ms
486: learn: 0.9992857 total: 749ms remaining: 481ms
487: learn: 0.9992857 total: 750ms remaining: 480ms
488: learn: 0.9992857 total: 752ms remaining: 478ms
489: learn: 0.9992857 total: 753ms remaining: 476ms
490: learn: 0.9992857 total: 754ms remaining: 475ms
491: learn: 0.9992857 total: 755ms remaining: 473ms
492: learn: 0.9992857 total: 757ms remaining: 471ms
493: learn: 0.9992857 total: 758ms remaining: 469ms
494: learn: 0.9992857 total: 759ms remaining: 468ms
495: learn: 0.9992857 total: 760ms remaining: 466ms
496: learn: 0.9992857 total: 761ms remaining: 464ms
497: learn: 0.9992857 total: 763ms remaining: 463ms
498: learn: 0.9992857 total: 764ms remaining: 461ms
499: learn: 0.9992857 total: 765ms remaining: 459ms
500: learn: 0.9992857 total: 766ms remaining: 457ms
501: learn: 0.9992857 total: 768ms remaining: 456ms
502: learn: 0.9992857 total: 769ms remaining: 454ms
503: learn: 0.9992857 total: 770ms remaining: 452ms
504: learn: 0.9992857 total: 771ms remaining: 451ms
505: learn: 0.9992857 total: 773ms remaining: 449ms
506: learn: 0.9992857 total: 774ms remaining: 447ms
507: learn: 0.9992857 total: 775ms remaining: 446ms
508: learn: 0.9992857 total: 776ms remaining: 444ms
509: learn: 0.9992857 total: 777ms remaining: 442ms
510: learn: 0.9992857 total: 779ms remaining: 440ms
511: learn: 0.9992857 total: 780ms remaining: 439ms
512: learn: 0.9992857 total: 781ms remaining: 437ms
513: learn: 0.9992857 total: 782ms remaining: 435ms
514: learn: 0.9992857 total: 783ms remaining: 434ms
515: learn: 0.9992857 total: 785ms remaining: 432ms
516: learn: 0.9992857 total: 786ms remaining: 430ms
517: learn: 0.9992857 total: 787ms remaining: 428ms
518: learn: 0.9992857 total: 788ms remaining: 427ms
519: learn: 0.9992857 total: 789ms remaining: 425ms
520: learn: 0.9992857 total: 791ms remaining: 423ms
521: learn: 0.9992857 total: 792ms remaining: 422ms
522: learn: 0.9992857 total: 793ms remaining: 420ms
523: learn: 0.9992857 total: 794ms remaining: 418ms
524: learn: 0.9992857 total: 795ms remaining: 417ms
525: learn: 0.9992857 total: 797ms remaining: 415ms
526: learn: 0.9992857 total: 798ms remaining: 413ms
527: learn: 0.9992857 total: 799ms remaining: 412ms
528: learn: 0.9992857 total: 800ms remaining: 410ms
529: learn: 0.9992857 total: 802ms remaining: 408ms
530: learn: 0.9992857 total: 803ms remaining: 407ms
531: learn: 0.9992857 total: 804ms remaining: 405ms
532: learn: 0.9992857 total: 805ms remaining: 403ms
533: learn: 0.9992857 total: 806ms remaining: 402ms
534: learn: 0.9992857 total: 807ms remaining: 400ms
535: learn: 0.9992857 total: 809ms remaining: 398ms
536: learn: 0.9992857 total: 810ms remaining: 397ms
537: learn: 0.9992857 total: 811ms remaining: 395ms
538: learn: 0.9992857 total: 812ms remaining: 393ms
539: learn: 0.9992857 total: 814ms remaining: 392ms
540: learn: 0.9992857 total: 815ms remaining: 390ms
541: learn: 0.9992857 total: 816ms remaining: 388ms
542: learn: 0.9992857 total: 817ms remaining: 387ms
543: learn: 0.9992857 total: 818ms remaining: 385ms
544: learn: 0.9992857 total: 820ms remaining: 383ms
545: learn: 0.9992857 total: 821ms remaining: 382ms
546: learn: 0.9992857 total: 822ms remaining: 380ms
547: learn: 0.9992857 total: 823ms remaining: 379ms
548: learn: 0.9992857 total: 825ms remaining: 377ms
549: learn: 0.9992857 total: 826ms remaining: 375ms
550: learn: 0.9992857 total: 827ms remaining: 374ms
551: learn: 0.9992857 total: 828ms remaining: 372ms
552: learn: 0.9992857 total: 829ms remaining: 370ms
553: learn: 0.9992857 total: 831ms remaining: 369ms
554: learn: 0.9992857 total: 832ms remaining: 367ms
555: learn: 0.9992857 total: 833ms remaining: 366ms
556: learn: 0.9992857 total: 834ms remaining: 364ms
557: learn: 0.9992857 total: 835ms remaining: 362ms
558: learn: 0.9992857 total: 837ms remaining: 361ms
559: learn: 0.9992857 total: 838ms remaining: 359ms
560: learn: 0.9992857 total: 839ms remaining: 358ms
561: learn: 0.9992857 total: 841ms remaining: 356ms
562: learn: 0.9992857 total: 842ms remaining: 354ms
563: learn: 0.9992857 total: 843ms remaining: 353ms
564: learn: 0.9992857 total: 844ms remaining: 351ms
565: learn: 0.9992857 total: 846ms remaining: 350ms
566: learn: 0.9992857 total: 847ms remaining: 348ms
567: learn: 0.9992857 total: 848ms remaining: 346ms
568: learn: 0.9992857 total: 849ms remaining: 345ms
569: learn: 0.9992857 total: 850ms remaining: 343ms
570: learn: 0.9992857 total: 852ms remaining: 342ms
571: learn: 0.9992857 total: 853ms remaining: 340ms
572: learn: 0.9992857 total: 854ms remaining: 338ms
573: learn: 0.9992857 total: 855ms remaining: 337ms
574: learn: 0.9992857 total: 857ms remaining: 335ms
575: learn: 0.9992857 total: 858ms remaining: 334ms
576: learn: 0.9992857 total: 859ms remaining: 332ms
577: learn: 0.9992857 total: 861ms remaining: 331ms
578: learn: 0.9992857 total: 862ms remaining: 329ms
579: learn: 0.9992857 total: 863ms remaining: 327ms
580: learn: 0.9992857 total: 864ms remaining: 326ms
581: learn: 0.9992857 total: 866ms remaining: 324ms
582: learn: 0.9992857 total: 867ms remaining: 323ms
583: learn: 0.9992857 total: 868ms remaining: 321ms
584: learn: 0.9992857 total: 870ms remaining: 320ms
585: learn: 0.9992857 total: 871ms remaining: 318ms
586: learn: 0.9992857 total: 872ms remaining: 316ms
587: learn: 0.9992857 total: 873ms remaining: 315ms
588: learn: 0.9992857 total: 875ms remaining: 313ms
589: learn: 0.9992857 total: 876ms remaining: 312ms
590: learn: 0.9992857 total: 877ms remaining: 310ms
591: learn: 0.9992857 total: 878ms remaining: 309ms
592: learn: 0.9992857 total: 880ms remaining: 307ms
593: learn: 0.9992857 total: 881ms remaining: 305ms
594: learn: 0.9992857 total: 882ms remaining: 304ms
595: learn: 0.9992857 total: 883ms remaining: 302ms
596: learn: 0.9992857 total: 885ms remaining: 301ms
597: learn: 0.9992857 total: 886ms remaining: 299ms
598: learn: 0.9992857 total: 887ms remaining: 298ms
599: learn: 0.9992857 total: 888ms remaining: 296ms
600: learn: 0.9992857 total: 889ms remaining: 294ms
601: learn: 0.9992857 total: 891ms remaining: 293ms
602: learn: 0.9992857 total: 892ms remaining: 291ms
603: learn: 0.9992857 total: 893ms remaining: 290ms
604: learn: 0.9992857 total: 894ms remaining: 288ms
605: learn: 0.9992857 total: 896ms remaining: 287ms
606: learn: 0.9992857 total: 897ms remaining: 285ms
607: learn: 0.9992857 total: 898ms remaining: 284ms
608: learn: 0.9992857 total: 899ms remaining: 282ms
609: learn: 0.9992857 total: 900ms remaining: 280ms
610: learn: 0.9992857 total: 902ms remaining: 279ms
611: learn: 0.9992857 total: 903ms remaining: 277ms
612: learn: 0.9992857 total: 904ms remaining: 276ms
613: learn: 0.9992857 total: 905ms remaining: 274ms
614: learn: 0.9992857 total: 907ms remaining: 273ms
615: learn: 0.9992857 total: 908ms remaining: 271ms
616: learn: 0.9992857 total: 909ms remaining: 270ms
617: learn: 0.9992857 total: 910ms remaining: 268ms
618: learn: 0.9992857 total: 911ms remaining: 267ms
619: learn: 0.9992857 total: 913ms remaining: 265ms
620: learn: 0.9992857 total: 914ms remaining: 263ms
621: learn: 0.9992857 total: 915ms remaining: 262ms
622: learn: 0.9992857 total: 916ms remaining: 260ms
623: learn: 0.9992857 total: 918ms remaining: 259ms
624: learn: 0.9992857 total: 919ms remaining: 257ms
625: learn: 0.9992857 total: 920ms remaining: 256ms
626: learn: 0.9992857 total: 921ms remaining: 254ms
627: learn: 0.9992857 total: 922ms remaining: 253ms
628: learn: 0.9992857 total: 924ms remaining: 251ms
629: learn: 0.9992857 total: 925ms remaining: 250ms
630: learn: 0.9992857 total: 926ms remaining: 248ms
631: learn: 0.9992857 total: 928ms remaining: 247ms
632: learn: 0.9992857 total: 929ms remaining: 245ms
633: learn: 0.9992857 total: 930ms remaining: 244ms
634: learn: 0.9992857 total: 932ms remaining: 242ms
635: learn: 0.9992857 total: 933ms remaining: 241ms
636: learn: 0.9992857 total: 934ms remaining: 239ms
637: learn: 0.9992857 total: 936ms remaining: 238ms
638: learn: 0.9992857 total: 937ms remaining: 236ms
639: learn: 0.9992857 total: 938ms remaining: 235ms
640: learn: 0.9992857 total: 939ms remaining: 233ms
641: learn: 0.9992857 total: 941ms remaining: 232ms
642: learn: 0.9992857 total: 942ms remaining: 230ms
643: learn: 0.9992857 total: 944ms remaining: 229ms
644: learn: 0.9992857 total: 945ms remaining: 227ms
645: learn: 0.9992857 total: 946ms remaining: 226ms
646: learn: 0.9992857 total: 948ms remaining: 224ms
647: learn: 0.9992857 total: 949ms remaining: 223ms
648: learn: 0.9992857 total: 950ms remaining: 221ms
649: learn: 0.9992857 total: 952ms remaining: 220ms
650: learn: 0.9992857 total: 953ms remaining: 218ms
651: learn: 0.9992857 total: 954ms remaining: 217ms
652: learn: 0.9992857 total: 955ms remaining: 215ms
653: learn: 0.9992857 total: 957ms remaining: 214ms
654: learn: 0.9992857 total: 958ms remaining: 212ms
655: learn: 0.9992857 total: 959ms remaining: 211ms
656: learn: 0.9992857 total: 960ms remaining: 209ms
657: learn: 0.9992857 total: 962ms remaining: 208ms
658: learn: 0.9992857 total: 963ms remaining: 206ms
659: learn: 0.9992857 total: 964ms remaining: 205ms
660: learn: 0.9992857 total: 965ms remaining: 203ms
661: learn: 0.9992857 total: 966ms remaining: 201ms
662: learn: 0.9992857 total: 968ms remaining: 200ms
663: learn: 0.9992857 total: 969ms remaining: 198ms
664: learn: 0.9992857 total: 970ms remaining: 197ms
665: learn: 0.9992857 total: 971ms remaining: 195ms
666: learn: 0.9992857 total: 973ms remaining: 194ms
667: learn: 0.9992857 total: 974ms remaining: 192ms
668: learn: 0.9992857 total: 975ms remaining: 191ms
669: learn: 0.9992857 total: 976ms remaining: 189ms
670: learn: 0.9992857 total: 978ms remaining: 188ms
671: learn: 0.9992857 total: 979ms remaining: 186ms
672: learn: 0.9992857 total: 980ms remaining: 185ms
673: learn: 0.9992857 total: 981ms remaining: 183ms
674: learn: 0.9992857 total: 983ms remaining: 182ms
675: learn: 0.9992857 total: 984ms remaining: 180ms
676: learn: 0.9992857 total: 985ms remaining: 179ms
677: learn: 0.9992857 total: 986ms remaining: 177ms
678: learn: 0.9992857 total: 987ms remaining: 176ms
679: learn: 0.9992857 total: 989ms remaining: 174ms
680: learn: 0.9992857 total: 990ms remaining: 173ms
681: learn: 0.9992857 total: 991ms remaining: 171ms
682: learn: 0.9992857 total: 992ms remaining: 170ms
683: learn: 0.9992857 total: 994ms remaining: 169ms
684: learn: 0.9992857 total: 995ms remaining: 167ms
685: learn: 0.9992857 total: 996ms remaining: 166ms
686: learn: 0.9992857 total: 997ms remaining: 164ms
687: learn: 0.9992857 total: 998ms remaining: 163ms
688: learn: 0.9992857 total: 1000ms remaining: 161ms
689: learn: 0.9992857 total: 1s remaining: 160ms
690: learn: 0.9992857 total: 1s remaining: 158ms
691: learn: 0.9992857 total: 1s remaining: 157ms
692: learn: 0.9992857 total: 1s remaining: 155ms
693: learn: 0.9992857 total: 1s remaining: 154ms
694: learn: 0.9992857 total: 1.01s remaining: 152ms
695: learn: 0.9992857 total: 1.01s remaining: 151ms
696: learn: 0.9992857 total: 1.01s remaining: 149ms
697: learn: 0.9992857 total: 1.01s remaining: 148ms
698: learn: 0.9992857 total: 1.01s remaining: 146ms
699: learn: 0.9992857 total: 1.01s remaining: 145ms
700: learn: 0.9992857 total: 1.01s remaining: 143ms
701: learn: 0.9992857 total: 1.02s remaining: 142ms
702: learn: 0.9992857 total: 1.02s remaining: 140ms
703: learn: 0.9992857 total: 1.02s remaining: 139ms
704: learn: 0.9992857 total: 1.02s remaining: 137ms
705: learn: 0.9992857 total: 1.02s remaining: 136ms
706: learn: 0.9992857 total: 1.02s remaining: 135ms
707: learn: 0.9992857 total: 1.02s remaining: 133ms
708: learn: 0.9992857 total: 1.03s remaining: 132ms
709: learn: 0.9992857 total: 1.03s remaining: 130ms
710: learn: 0.9992857 total: 1.03s remaining: 129ms
711: learn: 0.9992857 total: 1.03s remaining: 127ms
712: learn: 0.9992857 total: 1.03s remaining: 126ms
713: learn: 0.9992857 total: 1.03s remaining: 124ms
714: learn: 0.9992857 total: 1.03s remaining: 123ms
715: learn: 0.9992857 total: 1.03s remaining: 122ms
716: learn: 0.9992857 total: 1.04s remaining: 120ms
717: learn: 0.9992857 total: 1.04s remaining: 119ms
718: learn: 0.9992857 total: 1.04s remaining: 117ms
719: learn: 0.9992857 total: 1.04s remaining: 116ms
720: learn: 0.9992857 total: 1.04s remaining: 114ms
721: learn: 0.9992857 total: 1.04s remaining: 113ms
722: learn: 0.9992857 total: 1.04s remaining: 111ms
723: learn: 0.9992857 total: 1.05s remaining: 110ms
724: learn: 0.9992857 total: 1.05s remaining: 108ms
725: learn: 0.9992857 total: 1.05s remaining: 107ms
726: learn: 0.9992857 total: 1.05s remaining: 105ms
727: learn: 0.9992857 total: 1.05s remaining: 104ms
728: learn: 0.9992857 total: 1.05s remaining: 103ms
729: learn: 0.9992857 total: 1.05s remaining: 101ms
730: learn: 0.9992857 total: 1.05s remaining: 99.6ms
731: learn: 0.9992857 total: 1.06s remaining: 98.2ms
732: learn: 0.9992857 total: 1.06s remaining: 96.7ms
733: learn: 0.9992857 total: 1.06s remaining: 95.2ms
734: learn: 0.9992857 total: 1.06s remaining: 93.8ms
735: learn: 0.9992857 total: 1.06s remaining: 92.3ms
736: learn: 0.9992857 total: 1.06s remaining: 90.8ms
737: learn: 0.9992857 total: 1.06s remaining: 89.4ms
738: learn: 0.9992857 total: 1.06s remaining: 87.9ms
739: learn: 0.9992857 total: 1.07s remaining: 86.5ms
740: learn: 0.9992857 total: 1.07s remaining: 85ms
741: learn: 0.9992857 total: 1.07s remaining: 83.6ms
742: learn: 0.9992857 total: 1.07s remaining: 82.1ms
743: learn: 0.9992857 total: 1.07s remaining: 80.7ms
744: learn: 0.9992857 total: 1.07s remaining: 79.2ms
745: learn: 0.9992857 total: 1.07s remaining: 77.7ms
746: learn: 0.9992857 total: 1.07s remaining: 76.3ms
747: learn: 0.9992857 total: 1.08s remaining: 74.8ms
748: learn: 0.9992857 total: 1.08s remaining: 73.4ms
749: learn: 0.9992857 total: 1.08s remaining: 71.9ms
750: learn: 0.9992857 total: 1.08s remaining: 70.5ms
751: learn: 0.9992857 total: 1.08s remaining: 69ms
752: learn: 0.9992857 total: 1.08s remaining: 67.6ms
753: learn: 0.9992857 total: 1.08s remaining: 66.1ms
754: learn: 0.9992857 total: 1.08s remaining: 64.7ms
755: learn: 0.9992857 total: 1.09s remaining: 63.3ms
756: learn: 0.9992857 total: 1.09s remaining: 61.8ms
757: learn: 0.9992857 total: 1.09s remaining: 60.4ms
758: learn: 0.9992857 total: 1.09s remaining: 58.9ms
759: learn: 0.9992857 total: 1.09s remaining: 57.5ms
760: learn: 0.9992857 total: 1.09s remaining: 56ms
761: learn: 0.9992857 total: 1.09s remaining: 54.6ms
762: learn: 0.9992857 total: 1.09s remaining: 53.1ms
763: learn: 0.9992857 total: 1.1s remaining: 51.7ms
764: learn: 0.9992857 total: 1.1s remaining: 50.3ms
765: learn: 0.9992857 total: 1.1s remaining: 48.8ms
766: learn: 0.9992857 total: 1.1s remaining: 47.4ms
767: learn: 0.9992857 total: 1.1s remaining: 45.9ms
768: learn: 0.9992857 total: 1.1s remaining: 44.5ms
769: learn: 0.9992857 total: 1.1s remaining: 43ms
770: learn: 0.9992857 total: 1.11s remaining: 41.6ms
771: learn: 0.9992857 total: 1.11s remaining: 40.2ms
772: learn: 0.9992857 total: 1.11s remaining: 38.7ms
773: learn: 0.9992857 total: 1.11s remaining: 37.3ms
774: learn: 0.9992857 total: 1.11s remaining: 35.8ms
775: learn: 0.9992857 total: 1.11s remaining: 34.4ms
776: learn: 0.9992857 total: 1.11s remaining: 33ms
777: learn: 0.9992857 total: 1.11s remaining: 31.5ms
778: learn: 0.9992857 total: 1.12s remaining: 30.1ms
779: learn: 0.9992857 total: 1.12s remaining: 28.7ms
780: learn: 0.9992857 total: 1.12s remaining: 27.2ms
781: learn: 0.9992857 total: 1.12s remaining: 25.8ms
782: learn: 0.9992857 total: 1.12s remaining: 24.4ms
783: learn: 0.9992857 total: 1.12s remaining: 22.9ms
784: learn: 0.9992857 total: 1.12s remaining: 21.5ms
785: learn: 0.9992857 total: 1.13s remaining: 20.1ms
786: learn: 0.9992857 total: 1.13s remaining: 18.6ms
787: learn: 0.9992857 total: 1.13s remaining: 17.2ms
788: learn: 0.9992857 total: 1.13s remaining: 15.8ms
789: learn: 0.9992857 total: 1.13s remaining: 14.3ms
790: learn: 0.9992857 total: 1.13s remaining: 12.9ms
791: learn: 0.9992857 total: 1.13s remaining: 11.5ms
792: learn: 0.9992857 total: 1.13s remaining: 10ms
793: learn: 0.9992857 total: 1.14s remaining: 8.59ms
794: learn: 0.9992857 total: 1.14s remaining: 7.16ms
795: learn: 0.9992857 total: 1.14s remaining: 5.72ms
796: learn: 0.9992857 total: 1.14s remaining: 4.29ms
797: learn: 0.9992857 total: 1.14s remaining: 2.86ms
798: learn: 0.9992857 total: 1.14s remaining: 1.43ms
799: learn: 0.9992857 total: 1.14s remaining: 0us
model_eval(clf, train, test)
train_roc_auc_score: 0.999998962825595
test_roc_auc_score: 0.7423918968023258
train_accuracy_score: 0.9992857142857143
test_accuracy_score: 0.7083333333333334
train_precision_score: 1.0
test__precision_score: 0.7393767705382436
train_recall_score: 0.9987325728770595
test_recall_score: 0.7587209302325582
train_f1_score: 0.9993658845909955
test_f1_score: 0.7489239598278336
这里面输入test.values与test 都是可以的,即这里支持 numpy.ndarray和pandas的DataFrame
clf.predict( test.values )
clf.predict( test)
array([0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1,
0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0,
1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0,
1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1,
1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0,
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1,
1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1,
0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0,
0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1,
1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0,
1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0,
1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 0, 0], dtype=int64)
clf.predict_proba(test.values )
array([[0.78013413, 0.21986587],
[0.1147824 , 0.8852176 ],
[0.41869628, 0.58130372],
...,
[0.00353316, 0.99646684],
[0.5682076 , 0.4317924 ],
[0.98157093, 0.01842907]])
joblib.dump(clf , r'D:\Ensemble_Learning\catboost_info\catboostsingle.model')
load_model=joblib.load(r'D:\Ensemble_Learning\catboost_info\catboostsingle.model')
load_model.predict( test )
load_model.predict_proba(test )
array([[0.78013413, 0.21986587],
[0.1147824 , 0.8852176 ],
[0.41869628, 0.58130372],
...,
[0.00353316, 0.99646684],
[0.5682076 , 0.4317924 ],
[0.98157093, 0.01842907]])
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
grid_parameters = { #'depth': [6,7],
#'l2_leaf_reg': [9,10,11],
#'penalties_coefficient':[15,20],
#'ctr_leaf_count_limit':[200,300],
#'one_hot_max_size':[8,10]
#'learning_rate': [0.15,0.14],
#'best_model_min_trees':[10,8],
'min_data_in_leaf':[100], #60
'border_count':[12], #24
#'max_ctr_complexity':[2]
# 'subsample':[0.5,0.53],
# 'colsample_bylevel':[0.55,0.58]
}
model_ini = cb.CatBoostClassifier(cat_features=cat_features_index,
eval_metric='Accuracy',
random_seed=11,
random_strength=1,
depth=7,
l2_leaf_reg=10,
penalties_coefficient=15,
one_hot_max_size=12,
iterations=900,
learning_rate=0.15,
#min_data_in_leaf=30,
od_pval=10e-3,
early_stopping_rounds=20,
#border_count= 64,
max_ctr_complexity=2,
#grow_policy='Depthwise',
subsample=0.53,
colsample_bylevel=0.58,
)
clf = GridSearchCV(model_ini, grid_parameters, cv=2, scoring='accuracy',verbose=1,n_jobs=-1)
clf.fit(train, y_train)
Fitting 2 folds for each of 1 candidates, totalling 2 fits
0: learn: 0.5957143 total: 10.4ms remaining: 9.31s
1: learn: 0.6957143 total: 20.1ms remaining: 9.01s
2: learn: 0.7235714 total: 27.1ms remaining: 8.09s
3: learn: 0.7350000 total: 35.4ms remaining: 7.93s
4: learn: 0.7457143 total: 45.5ms remaining: 8.14s
5: learn: 0.7521429 total: 52.1ms remaining: 7.77s
6: learn: 0.7600000 total: 55.9ms remaining: 7.13s
7: learn: 0.7685714 total: 63.3ms remaining: 7.05s
8: learn: 0.7842857 total: 69.8ms remaining: 6.91s
9: learn: 0.7800000 total: 75.3ms remaining: 6.7s
10: learn: 0.7864286 total: 82.3ms remaining: 6.65s
11: learn: 0.7857143 total: 89.6ms remaining: 6.63s
12: learn: 0.7957143 total: 96.3ms remaining: 6.57s
13: learn: 0.7992857 total: 104ms remaining: 6.57s
14: learn: 0.8121429 total: 111ms remaining: 6.54s
15: learn: 0.8178571 total: 117ms remaining: 6.44s
16: learn: 0.8207143 total: 121ms remaining: 6.31s
17: learn: 0.8185714 total: 126ms remaining: 6.19s
18: learn: 0.8207143 total: 132ms remaining: 6.14s
19: learn: 0.8278571 total: 137ms remaining: 6.03s
20: learn: 0.8257143 total: 144ms remaining: 6.03s
21: learn: 0.8271429 total: 150ms remaining: 5.97s
22: learn: 0.8350000 total: 155ms remaining: 5.9s
23: learn: 0.8414286 total: 163ms remaining: 5.94s
24: learn: 0.8442857 total: 170ms remaining: 5.96s
25: learn: 0.8435714 total: 174ms remaining: 5.85s
26: learn: 0.8421429 total: 182ms remaining: 5.89s
27: learn: 0.8521429 total: 190ms remaining: 5.91s
28: learn: 0.8550000 total: 198ms remaining: 5.95s
29: learn: 0.8557143 total: 210ms remaining: 6.08s
30: learn: 0.8578571 total: 222ms remaining: 6.21s
31: learn: 0.8557143 total: 228ms remaining: 6.19s
32: learn: 0.8571429 total: 236ms remaining: 6.21s
33: learn: 0.8635714 total: 244ms remaining: 6.22s
34: learn: 0.8628571 total: 252ms remaining: 6.22s
35: learn: 0.8635714 total: 257ms remaining: 6.17s
36: learn: 0.8685714 total: 263ms remaining: 6.13s
37: learn: 0.8700000 total: 271ms remaining: 6.14s
38: learn: 0.8728571 total: 277ms remaining: 6.13s
39: learn: 0.8721429 total: 286ms remaining: 6.14s
40: learn: 0.8778571 total: 289ms remaining: 6.06s
41: learn: 0.8807143 total: 297ms remaining: 6.06s
42: learn: 0.8785714 total: 302ms remaining: 6.03s
43: learn: 0.8800000 total: 308ms remaining: 5.99s
44: learn: 0.8807143 total: 313ms remaining: 5.96s
45: learn: 0.8807143 total: 321ms remaining: 5.96s
46: learn: 0.8814286 total: 329ms remaining: 5.97s
47: learn: 0.8828571 total: 336ms remaining: 5.96s
48: learn: 0.8864286 total: 343ms remaining: 5.96s
49: learn: 0.8892857 total: 349ms remaining: 5.94s
50: learn: 0.8885714 total: 355ms remaining: 5.91s
51: learn: 0.8942857 total: 362ms remaining: 5.89s
52: learn: 0.8957143 total: 370ms remaining: 5.92s
53: learn: 0.9014286 total: 375ms remaining: 5.88s
54: learn: 0.9021429 total: 383ms remaining: 5.89s
55: learn: 0.9035714 total: 389ms remaining: 5.86s
56: learn: 0.9064286 total: 403ms remaining: 5.96s
57: learn: 0.9064286 total: 414ms remaining: 6.01s
58: learn: 0.9114286 total: 421ms remaining: 6s
59: learn: 0.9114286 total: 428ms remaining: 5.99s
60: learn: 0.9135714 total: 436ms remaining: 6s
61: learn: 0.9150000 total: 442ms remaining: 5.97s
62: learn: 0.9178571 total: 448ms remaining: 5.95s
63: learn: 0.9178571 total: 455ms remaining: 5.94s
64: learn: 0.9228571 total: 461ms remaining: 5.93s
65: learn: 0.9250000 total: 469ms remaining: 5.92s
66: learn: 0.9228571 total: 476ms remaining: 5.92s
67: learn: 0.9250000 total: 480ms remaining: 5.88s
68: learn: 0.9271429 total: 487ms remaining: 5.86s
69: learn: 0.9278571 total: 494ms remaining: 5.86s
70: learn: 0.9257143 total: 500ms remaining: 5.84s
71: learn: 0.9278571 total: 507ms remaining: 5.83s
72: learn: 0.9292857 total: 513ms remaining: 5.81s
73: learn: 0.9314286 total: 521ms remaining: 5.81s
74: learn: 0.9300000 total: 527ms remaining: 5.8s
75: learn: 0.9307143 total: 532ms remaining: 5.77s
76: learn: 0.9342857 total: 541ms remaining: 5.78s
77: learn: 0.9342857 total: 548ms remaining: 5.78s
78: learn: 0.9328571 total: 555ms remaining: 5.77s
79: learn: 0.9350000 total: 562ms remaining: 5.76s
80: learn: 0.9371429 total: 568ms remaining: 5.74s
81: learn: 0.9385714 total: 575ms remaining: 5.74s
82: learn: 0.9407143 total: 582ms remaining: 5.73s
83: learn: 0.9421429 total: 591ms remaining: 5.75s
84: learn: 0.9421429 total: 602ms remaining: 5.77s
85: learn: 0.9421429 total: 609ms remaining: 5.76s
86: learn: 0.9450000 total: 613ms remaining: 5.73s
87: learn: 0.9442857 total: 618ms remaining: 5.7s
88: learn: 0.9457143 total: 623ms remaining: 5.68s
89: learn: 0.9464286 total: 630ms remaining: 5.67s
90: learn: 0.9457143 total: 636ms remaining: 5.66s
91: learn: 0.9435714 total: 643ms remaining: 5.64s
92: learn: 0.9485714 total: 649ms remaining: 5.63s
93: learn: 0.9492857 total: 654ms remaining: 5.61s
94: learn: 0.9542857 total: 660ms remaining: 5.59s
95: learn: 0.9564286 total: 667ms remaining: 5.59s
96: learn: 0.9550000 total: 673ms remaining: 5.57s
97: learn: 0.9550000 total: 683ms remaining: 5.58s
98: learn: 0.9550000 total: 687ms remaining: 5.56s
99: learn: 0.9571429 total: 691ms remaining: 5.53s
100: learn: 0.9578571 total: 700ms remaining: 5.54s
101: learn: 0.9621429 total: 706ms remaining: 5.52s
102: learn: 0.9607143 total: 712ms remaining: 5.5s
103: learn: 0.9614286 total: 716ms remaining: 5.48s
104: learn: 0.9635714 total: 724ms remaining: 5.48s
105: learn: 0.9635714 total: 730ms remaining: 5.47s
106: learn: 0.9635714 total: 738ms remaining: 5.47s
107: learn: 0.9621429 total: 742ms remaining: 5.44s
108: learn: 0.9650000 total: 748ms remaining: 5.43s
109: learn: 0.9664286 total: 752ms remaining: 5.4s
110: learn: 0.9642857 total: 760ms remaining: 5.4s
111: learn: 0.9657143 total: 767ms remaining: 5.4s
112: learn: 0.9664286 total: 776ms remaining: 5.4s
113: learn: 0.9671429 total: 786ms remaining: 5.42s
114: learn: 0.9671429 total: 800ms remaining: 5.46s
115: learn: 0.9707143 total: 808ms remaining: 5.46s
116: learn: 0.9728571 total: 814ms remaining: 5.45s
117: learn: 0.9728571 total: 821ms remaining: 5.44s
118: learn: 0.9742857 total: 829ms remaining: 5.44s
119: learn: 0.9750000 total: 836ms remaining: 5.43s
120: learn: 0.9771429 total: 844ms remaining: 5.43s
121: learn: 0.9771429 total: 850ms remaining: 5.42s
122: learn: 0.9764286 total: 857ms remaining: 5.42s
123: learn: 0.9771429 total: 864ms remaining: 5.4s
124: learn: 0.9778571 total: 870ms remaining: 5.39s
125: learn: 0.9800000 total: 877ms remaining: 5.38s
126: learn: 0.9800000 total: 883ms remaining: 5.37s
127: learn: 0.9807143 total: 889ms remaining: 5.36s
128: learn: 0.9792857 total: 893ms remaining: 5.34s
129: learn: 0.9785714 total: 901ms remaining: 5.34s
130: learn: 0.9792857 total: 908ms remaining: 5.33s
131: learn: 0.9807143 total: 913ms remaining: 5.31s
132: learn: 0.9807143 total: 921ms remaining: 5.31s
133: learn: 0.9800000 total: 930ms remaining: 5.32s
134: learn: 0.9800000 total: 937ms remaining: 5.31s
135: learn: 0.9807143 total: 941ms remaining: 5.29s
136: learn: 0.9807143 total: 948ms remaining: 5.28s
137: learn: 0.9792857 total: 955ms remaining: 5.27s
138: learn: 0.9807143 total: 962ms remaining: 5.27s
139: learn: 0.9821429 total: 970ms remaining: 5.26s
140: learn: 0.9835714 total: 984ms remaining: 5.3s
141: learn: 0.9842857 total: 993ms remaining: 5.3s
142: learn: 0.9842857 total: 1s remaining: 5.29s
143: learn: 0.9850000 total: 1s remaining: 5.28s
144: learn: 0.9850000 total: 1.01s remaining: 5.28s
145: learn: 0.9850000 total: 1.02s remaining: 5.28s
146: learn: 0.9850000 total: 1.03s remaining: 5.26s
147: learn: 0.9857143 total: 1.03s remaining: 5.25s
148: learn: 0.9864286 total: 1.04s remaining: 5.25s
149: learn: 0.9857143 total: 1.05s remaining: 5.24s
150: learn: 0.9850000 total: 1.05s remaining: 5.22s
151: learn: 0.9857143 total: 1.06s remaining: 5.22s
152: learn: 0.9871429 total: 1.06s remaining: 5.2s
153: learn: 0.9871429 total: 1.07s remaining: 5.19s
154: learn: 0.9878571 total: 1.08s remaining: 5.17s
155: learn: 0.9892857 total: 1.08s remaining: 5.17s
156: learn: 0.9892857 total: 1.09s remaining: 5.17s
157: learn: 0.9900000 total: 1.1s remaining: 5.16s
158: learn: 0.9885714 total: 1.11s remaining: 5.16s
159: learn: 0.9885714 total: 1.11s remaining: 5.15s
160: learn: 0.9892857 total: 1.12s remaining: 5.14s
161: learn: 0.9885714 total: 1.13s remaining: 5.13s
162: learn: 0.9900000 total: 1.13s remaining: 5.11s
163: learn: 0.9885714 total: 1.14s remaining: 5.11s
164: learn: 0.9907143 total: 1.14s remaining: 5.09s
165: learn: 0.9907143 total: 1.15s remaining: 5.09s
166: learn: 0.9907143 total: 1.16s remaining: 5.09s
167: learn: 0.9907143 total: 1.16s remaining: 5.08s
168: learn: 0.9907143 total: 1.17s remaining: 5.07s
169: learn: 0.9907143 total: 1.18s remaining: 5.07s
170: learn: 0.9907143 total: 1.19s remaining: 5.08s
171: learn: 0.9907143 total: 1.2s remaining: 5.06s
172: learn: 0.9907143 total: 1.2s remaining: 5.06s
173: learn: 0.9907143 total: 1.21s remaining: 5.06s
174: learn: 0.9907143 total: 1.22s remaining: 5.06s
175: learn: 0.9907143 total: 1.23s remaining: 5.06s
176: learn: 0.9914286 total: 1.24s remaining: 5.05s
177: learn: 0.9921429 total: 1.24s remaining: 5.04s
178: learn: 0.9921429 total: 1.25s remaining: 5.03s
179: learn: 0.9921429 total: 1.25s remaining: 5.02s
180: learn: 0.9921429 total: 1.26s remaining: 5.02s
181: learn: 0.9928571 total: 1.27s remaining: 5.01s
182: learn: 0.9928571 total: 1.28s remaining: 5.01s
183: learn: 0.9928571 total: 1.28s remaining: 5s
184: learn: 0.9935714 total: 1.29s remaining: 4.99s
185: learn: 0.9935714 total: 1.29s remaining: 4.97s
186: learn: 0.9935714 total: 1.3s remaining: 4.97s
187: learn: 0.9935714 total: 1.31s remaining: 4.96s
188: learn: 0.9942857 total: 1.32s remaining: 4.95s
189: learn: 0.9950000 total: 1.32s remaining: 4.95s
190: learn: 0.9942857 total: 1.33s remaining: 4.95s
191: learn: 0.9950000 total: 1.34s remaining: 4.95s
192: learn: 0.9950000 total: 1.35s remaining: 4.94s
193: learn: 0.9950000 total: 1.36s remaining: 4.94s
194: learn: 0.9971429 total: 1.36s remaining: 4.93s
195: learn: 0.9971429 total: 1.38s remaining: 4.94s
196: learn: 0.9971429 total: 1.39s remaining: 4.94s
197: learn: 0.9971429 total: 1.39s remaining: 4.94s
198: learn: 0.9964286 total: 1.4s remaining: 4.93s
199: learn: 0.9964286 total: 1.41s remaining: 4.93s
200: learn: 0.9964286 total: 1.41s remaining: 4.92s
201: learn: 0.9964286 total: 1.42s remaining: 4.92s
202: learn: 0.9957143 total: 1.43s remaining: 4.89s
203: learn: 0.9957143 total: 1.43s remaining: 4.89s
204: learn: 0.9957143 total: 1.44s remaining: 4.87s
205: learn: 0.9964286 total: 1.44s remaining: 4.86s
206: learn: 0.9964286 total: 1.45s remaining: 4.86s
207: learn: 0.9964286 total: 1.46s remaining: 4.85s
208: learn: 0.9971429 total: 1.47s remaining: 4.84s
209: learn: 0.9971429 total: 1.47s remaining: 4.83s
210: learn: 0.9971429 total: 1.48s remaining: 4.82s
211: learn: 0.9971429 total: 1.48s remaining: 4.81s
212: learn: 0.9971429 total: 1.49s remaining: 4.81s
213: learn: 0.9971429 total: 1.5s remaining: 4.8s
214: learn: 0.9964286 total: 1.5s remaining: 4.79s
215: learn: 0.9964286 total: 1.51s remaining: 4.78s
216: learn: 0.9964286 total: 1.51s remaining: 4.77s
217: learn: 0.9971429 total: 1.52s remaining: 4.76s
218: learn: 0.9971429 total: 1.53s remaining: 4.75s
219: learn: 0.9971429 total: 1.54s remaining: 4.76s
220: learn: 0.9971429 total: 1.55s remaining: 4.76s
221: learn: 0.9978571 total: 1.56s remaining: 4.76s
222: learn: 0.9978571 total: 1.57s remaining: 4.75s
223: learn: 0.9978571 total: 1.57s remaining: 4.75s
224: learn: 0.9985714 total: 1.58s remaining: 4.73s
225: learn: 0.9985714 total: 1.58s remaining: 4.73s
226: learn: 0.9985714 total: 1.59s remaining: 4.73s
227: learn: 0.9985714 total: 1.6s remaining: 4.73s
228: learn: 0.9985714 total: 1.61s remaining: 4.73s
229: learn: 0.9985714 total: 1.62s remaining: 4.72s
230: learn: 0.9985714 total: 1.63s remaining: 4.71s
231: learn: 0.9985714 total: 1.63s remaining: 4.71s
232: learn: 0.9985714 total: 1.64s remaining: 4.69s
233: learn: 0.9985714 total: 1.65s remaining: 4.68s
234: learn: 0.9985714 total: 1.65s remaining: 4.67s
235: learn: 0.9985714 total: 1.66s remaining: 4.67s
236: learn: 0.9985714 total: 1.67s remaining: 4.66s
237: learn: 0.9978571 total: 1.67s remaining: 4.65s
238: learn: 0.9978571 total: 1.68s remaining: 4.65s
239: learn: 0.9978571 total: 1.69s remaining: 4.65s
240: learn: 0.9985714 total: 1.7s remaining: 4.64s
241: learn: 0.9985714 total: 1.7s remaining: 4.63s
242: learn: 0.9985714 total: 1.71s remaining: 4.62s
243: learn: 0.9985714 total: 1.71s remaining: 4.61s
244: learn: 0.9985714 total: 1.72s remaining: 4.6s
245: learn: 0.9985714 total: 1.73s remaining: 4.59s
246: learn: 0.9978571 total: 1.74s remaining: 4.59s
247: learn: 0.9985714 total: 1.74s remaining: 4.58s
248: learn: 0.9985714 total: 1.76s remaining: 4.59s
249: learn: 0.9985714 total: 1.76s remaining: 4.59s
250: learn: 0.9985714 total: 1.77s remaining: 4.58s
251: learn: 0.9985714 total: 1.78s remaining: 4.57s
252: learn: 0.9985714 total: 1.78s remaining: 4.56s
253: learn: 0.9985714 total: 1.79s remaining: 4.55s
254: learn: 0.9985714 total: 1.8s remaining: 4.54s
255: learn: 0.9985714 total: 1.8s remaining: 4.54s
256: learn: 0.9985714 total: 1.81s remaining: 4.53s
257: learn: 0.9985714 total: 1.82s remaining: 4.52s
258: learn: 0.9985714 total: 1.82s remaining: 4.52s
259: learn: 0.9985714 total: 1.83s remaining: 4.51s
260: learn: 0.9985714 total: 1.84s remaining: 4.5s
261: learn: 0.9985714 total: 1.85s remaining: 4.5s
262: learn: 0.9985714 total: 1.85s remaining: 4.49s
263: learn: 0.9985714 total: 1.86s remaining: 4.48s
264: learn: 0.9992857 total: 1.87s remaining: 4.47s
265: learn: 0.9992857 total: 1.87s remaining: 4.46s
266: learn: 0.9992857 total: 1.88s remaining: 4.46s
267: learn: 0.9985714 total: 1.89s remaining: 4.45s
268: learn: 0.9985714 total: 1.89s remaining: 4.44s
269: learn: 0.9985714 total: 1.9s remaining: 4.44s
270: learn: 0.9985714 total: 1.91s remaining: 4.43s
271: learn: 0.9985714 total: 1.91s remaining: 4.42s
272: learn: 0.9985714 total: 1.92s remaining: 4.42s
273: learn: 0.9992857 total: 1.93s remaining: 4.41s
274: learn: 0.9985714 total: 1.94s remaining: 4.41s
275: learn: 0.9985714 total: 1.95s remaining: 4.4s
276: learn: 0.9985714 total: 1.95s remaining: 4.4s
277: learn: 0.9992857 total: 1.96s remaining: 4.39s
278: learn: 0.9985714 total: 1.97s remaining: 4.38s
279: learn: 0.9985714 total: 1.98s remaining: 4.38s
280: learn: 0.9992857 total: 1.98s remaining: 4.37s
281: learn: 0.9985714 total: 1.99s remaining: 4.36s
282: learn: 0.9992857 total: 2s remaining: 4.35s
283: learn: 1.0000000 total: 2s remaining: 4.34s
284: learn: 1.0000000 total: 2.01s remaining: 4.33s
285: learn: 1.0000000 total: 2.01s remaining: 4.32s
286: learn: 1.0000000 total: 2.02s remaining: 4.31s
287: learn: 1.0000000 total: 2.03s remaining: 4.31s
288: learn: 1.0000000 total: 2.04s remaining: 4.3s
289: learn: 1.0000000 total: 2.04s remaining: 4.29s
290: learn: 1.0000000 total: 2.04s remaining: 4.28s
291: learn: 1.0000000 total: 2.06s remaining: 4.28s
292: learn: 1.0000000 total: 2.06s remaining: 4.27s
293: learn: 1.0000000 total: 2.07s remaining: 4.26s
294: learn: 1.0000000 total: 2.08s remaining: 4.26s
295: learn: 1.0000000 total: 2.08s remaining: 4.25s
296: learn: 1.0000000 total: 2.09s remaining: 4.25s
297: learn: 1.0000000 total: 2.1s remaining: 4.24s
298: learn: 1.0000000 total: 2.11s remaining: 4.24s
299: learn: 1.0000000 total: 2.12s remaining: 4.24s
300: learn: 1.0000000 total: 2.12s remaining: 4.22s
301: learn: 1.0000000 total: 2.13s remaining: 4.22s
302: learn: 1.0000000 total: 2.14s remaining: 4.22s
303: learn: 1.0000000 total: 2.15s remaining: 4.21s
304: learn: 1.0000000 total: 2.15s remaining: 4.2s
305: learn: 0.9992857 total: 2.16s remaining: 4.19s
306: learn: 0.9992857 total: 2.17s remaining: 4.18s
307: learn: 0.9992857 total: 2.17s remaining: 4.18s
308: learn: 0.9992857 total: 2.18s remaining: 4.17s
309: learn: 0.9992857 total: 2.19s remaining: 4.17s
310: learn: 0.9992857 total: 2.2s remaining: 4.16s
311: learn: 0.9992857 total: 2.21s remaining: 4.16s
312: learn: 0.9992857 total: 2.21s remaining: 4.15s
313: learn: 0.9992857 total: 2.22s remaining: 4.14s
314: learn: 0.9992857 total: 2.22s remaining: 4.13s
315: learn: 0.9992857 total: 2.23s remaining: 4.12s
316: learn: 0.9992857 total: 2.24s remaining: 4.12s
317: learn: 0.9992857 total: 2.25s remaining: 4.11s
318: learn: 1.0000000 total: 2.25s remaining: 4.11s
319: learn: 1.0000000 total: 2.26s remaining: 4.1s
320: learn: 1.0000000 total: 2.27s remaining: 4.09s
321: learn: 1.0000000 total: 2.28s remaining: 4.09s
322: learn: 1.0000000 total: 2.28s remaining: 4.08s
323: learn: 1.0000000 total: 2.29s remaining: 4.08s
324: learn: 1.0000000 total: 2.3s remaining: 4.07s
325: learn: 1.0000000 total: 2.31s remaining: 4.06s
326: learn: 1.0000000 total: 2.32s remaining: 4.06s
327: learn: 1.0000000 total: 2.32s remaining: 4.05s
328: learn: 1.0000000 total: 2.33s remaining: 4.04s
329: learn: 1.0000000 total: 2.34s remaining: 4.04s
330: learn: 1.0000000 total: 2.34s remaining: 4.03s
331: learn: 1.0000000 total: 2.35s remaining: 4.02s
332: learn: 1.0000000 total: 2.36s remaining: 4.02s
333: learn: 1.0000000 total: 2.37s remaining: 4.01s
334: learn: 1.0000000 total: 2.38s remaining: 4.01s
335: learn: 1.0000000 total: 2.38s remaining: 4s
336: learn: 1.0000000 total: 2.39s remaining: 3.99s
337: learn: 1.0000000 total: 2.39s remaining: 3.98s
338: learn: 1.0000000 total: 2.4s remaining: 3.98s
339: learn: 1.0000000 total: 2.41s remaining: 3.96s
340: learn: 1.0000000 total: 2.41s remaining: 3.96s
341: learn: 1.0000000 total: 2.42s remaining: 3.95s
342: learn: 1.0000000 total: 2.42s remaining: 3.93s
343: learn: 1.0000000 total: 2.43s remaining: 3.93s
344: learn: 1.0000000 total: 2.44s remaining: 3.92s
345: learn: 1.0000000 total: 2.44s remaining: 3.92s
346: learn: 1.0000000 total: 2.45s remaining: 3.91s
347: learn: 1.0000000 total: 2.46s remaining: 3.9s
348: learn: 1.0000000 total: 2.47s remaining: 3.9s
349: learn: 1.0000000 total: 2.48s remaining: 3.89s
350: learn: 1.0000000 total: 2.48s remaining: 3.89s
351: learn: 1.0000000 total: 2.49s remaining: 3.88s
352: learn: 1.0000000 total: 2.5s remaining: 3.87s
353: learn: 1.0000000 total: 2.51s remaining: 3.87s
354: learn: 1.0000000 total: 2.52s remaining: 3.87s
355: learn: 1.0000000 total: 2.52s remaining: 3.86s
356: learn: 1.0000000 total: 2.53s remaining: 3.85s
357: learn: 1.0000000 total: 2.54s remaining: 3.84s
358: learn: 1.0000000 total: 2.54s remaining: 3.83s
359: learn: 1.0000000 total: 2.55s remaining: 3.83s
360: learn: 1.0000000 total: 2.56s remaining: 3.82s
361: learn: 1.0000000 total: 2.56s remaining: 3.81s
362: learn: 1.0000000 total: 2.57s remaining: 3.8s
363: learn: 1.0000000 total: 2.58s remaining: 3.8s
364: learn: 1.0000000 total: 2.59s remaining: 3.79s
365: learn: 1.0000000 total: 2.59s remaining: 3.78s
366: learn: 1.0000000 total: 2.6s remaining: 3.78s
367: learn: 1.0000000 total: 2.61s remaining: 3.77s
368: learn: 1.0000000 total: 2.61s remaining: 3.76s
369: learn: 1.0000000 total: 2.62s remaining: 3.75s
370: learn: 1.0000000 total: 2.63s remaining: 3.75s
371: learn: 1.0000000 total: 2.63s remaining: 3.74s
372: learn: 1.0000000 total: 2.64s remaining: 3.73s
373: learn: 1.0000000 total: 2.65s remaining: 3.72s
374: learn: 1.0000000 total: 2.65s remaining: 3.72s
375: learn: 1.0000000 total: 2.66s remaining: 3.71s
376: learn: 1.0000000 total: 2.67s remaining: 3.71s
377: learn: 1.0000000 total: 2.68s remaining: 3.7s
378: learn: 1.0000000 total: 2.69s remaining: 3.69s
379: learn: 1.0000000 total: 2.69s remaining: 3.69s
380: learn: 1.0000000 total: 2.7s remaining: 3.68s
381: learn: 1.0000000 total: 2.71s remaining: 3.67s
382: learn: 1.0000000 total: 2.72s remaining: 3.67s
383: learn: 1.0000000 total: 2.72s remaining: 3.66s
384: learn: 1.0000000 total: 2.73s remaining: 3.65s
385: learn: 1.0000000 total: 2.74s remaining: 3.65s
386: learn: 1.0000000 total: 2.75s remaining: 3.64s
387: learn: 1.0000000 total: 2.75s remaining: 3.63s
388: learn: 1.0000000 total: 2.76s remaining: 3.62s
389: learn: 1.0000000 total: 2.77s remaining: 3.62s
390: learn: 1.0000000 total: 2.77s remaining: 3.61s
391: learn: 1.0000000 total: 2.78s remaining: 3.6s
392: learn: 1.0000000 total: 2.79s remaining: 3.59s
393: learn: 1.0000000 total: 2.79s remaining: 3.59s
394: learn: 1.0000000 total: 2.8s remaining: 3.58s
395: learn: 1.0000000 total: 2.81s remaining: 3.57s
396: learn: 1.0000000 total: 2.81s remaining: 3.56s
397: learn: 1.0000000 total: 2.82s remaining: 3.56s
398: learn: 1.0000000 total: 2.83s remaining: 3.55s
399: learn: 1.0000000 total: 2.83s remaining: 3.54s
400: learn: 1.0000000 total: 2.85s remaining: 3.54s
401: learn: 1.0000000 total: 2.86s remaining: 3.54s
402: learn: 1.0000000 total: 2.86s remaining: 3.53s
403: learn: 1.0000000 total: 2.87s remaining: 3.52s
404: learn: 1.0000000 total: 2.88s remaining: 3.52s
405: learn: 1.0000000 total: 2.88s remaining: 3.51s
406: learn: 1.0000000 total: 2.89s remaining: 3.5s
407: learn: 1.0000000 total: 2.9s remaining: 3.49s
408: learn: 1.0000000 total: 2.9s remaining: 3.48s
409: learn: 1.0000000 total: 2.91s remaining: 3.48s
410: learn: 1.0000000 total: 2.92s remaining: 3.47s
411: learn: 1.0000000 total: 2.93s remaining: 3.47s
412: learn: 1.0000000 total: 2.93s remaining: 3.46s
413: learn: 1.0000000 total: 2.94s remaining: 3.46s
414: learn: 1.0000000 total: 2.95s remaining: 3.45s
415: learn: 1.0000000 total: 2.96s remaining: 3.44s
416: learn: 1.0000000 total: 2.96s remaining: 3.43s
417: learn: 1.0000000 total: 2.97s remaining: 3.43s
418: learn: 1.0000000 total: 2.98s remaining: 3.42s
419: learn: 1.0000000 total: 2.99s remaining: 3.41s
420: learn: 1.0000000 total: 2.99s remaining: 3.4s
421: learn: 1.0000000 total: 3s remaining: 3.4s
422: learn: 1.0000000 total: 3.01s remaining: 3.39s
423: learn: 1.0000000 total: 3.01s remaining: 3.38s
424: learn: 1.0000000 total: 3.02s remaining: 3.38s
425: learn: 1.0000000 total: 3.03s remaining: 3.37s
426: learn: 1.0000000 total: 3.04s remaining: 3.36s
427: learn: 1.0000000 total: 3.04s remaining: 3.35s
428: learn: 1.0000000 total: 3.05s remaining: 3.35s
429: learn: 1.0000000 total: 3.06s remaining: 3.34s
430: learn: 1.0000000 total: 3.07s remaining: 3.34s
431: learn: 1.0000000 total: 3.08s remaining: 3.33s
432: learn: 1.0000000 total: 3.08s remaining: 3.33s
433: learn: 1.0000000 total: 3.09s remaining: 3.32s
434: learn: 1.0000000 total: 3.1s remaining: 3.31s
435: learn: 1.0000000 total: 3.1s remaining: 3.31s
436: learn: 1.0000000 total: 3.11s remaining: 3.3s
437: learn: 1.0000000 total: 3.12s remaining: 3.29s
438: learn: 1.0000000 total: 3.13s remaining: 3.29s
439: learn: 1.0000000 total: 3.14s remaining: 3.28s
440: learn: 1.0000000 total: 3.15s remaining: 3.27s
441: learn: 1.0000000 total: 3.15s remaining: 3.27s
442: learn: 1.0000000 total: 3.16s remaining: 3.26s
443: learn: 1.0000000 total: 3.17s remaining: 3.25s
444: learn: 1.0000000 total: 3.18s remaining: 3.25s
445: learn: 1.0000000 total: 3.18s remaining: 3.24s
446: learn: 1.0000000 total: 3.19s remaining: 3.23s
447: learn: 1.0000000 total: 3.2s remaining: 3.22s
448: learn: 1.0000000 total: 3.2s remaining: 3.21s
449: learn: 1.0000000 total: 3.21s remaining: 3.21s
450: learn: 1.0000000 total: 3.22s remaining: 3.2s
451: learn: 1.0000000 total: 3.22s remaining: 3.19s
452: learn: 1.0000000 total: 3.23s remaining: 3.19s
453: learn: 1.0000000 total: 3.25s remaining: 3.19s
454: learn: 1.0000000 total: 3.25s remaining: 3.18s
455: learn: 1.0000000 total: 3.26s remaining: 3.17s
456: learn: 1.0000000 total: 3.26s remaining: 3.16s
457: learn: 1.0000000 total: 3.27s remaining: 3.16s
458: learn: 1.0000000 total: 3.28s remaining: 3.15s
459: learn: 1.0000000 total: 3.29s remaining: 3.14s
460: learn: 1.0000000 total: 3.29s remaining: 3.13s
461: learn: 1.0000000 total: 3.3s remaining: 3.13s
462: learn: 1.0000000 total: 3.31s remaining: 3.12s
463: learn: 1.0000000 total: 3.32s remaining: 3.12s
464: learn: 1.0000000 total: 3.32s remaining: 3.11s
465: learn: 1.0000000 total: 3.33s remaining: 3.1s
466: learn: 1.0000000 total: 3.34s remaining: 3.1s
467: learn: 1.0000000 total: 3.35s remaining: 3.09s
468: learn: 1.0000000 total: 3.35s remaining: 3.08s
469: learn: 1.0000000 total: 3.36s remaining: 3.08s
470: learn: 1.0000000 total: 3.37s remaining: 3.07s
471: learn: 1.0000000 total: 3.38s remaining: 3.06s
472: learn: 1.0000000 total: 3.38s remaining: 3.05s
473: learn: 1.0000000 total: 3.39s remaining: 3.05s
474: learn: 1.0000000 total: 3.4s remaining: 3.04s
475: learn: 1.0000000 total: 3.4s remaining: 3.03s
476: learn: 1.0000000 total: 3.4s remaining: 3.02s
477: learn: 1.0000000 total: 3.41s remaining: 3.01s
478: learn: 1.0000000 total: 3.42s remaining: 3s
479: learn: 1.0000000 total: 3.42s remaining: 2.99s
480: learn: 1.0000000 total: 3.43s remaining: 2.99s
481: learn: 1.0000000 total: 3.44s remaining: 2.98s
482: learn: 1.0000000 total: 3.45s remaining: 2.98s
483: learn: 1.0000000 total: 3.46s remaining: 2.97s
484: learn: 1.0000000 total: 3.46s remaining: 2.96s
485: learn: 1.0000000 total: 3.47s remaining: 2.96s
486: learn: 1.0000000 total: 3.48s remaining: 2.95s
487: learn: 1.0000000 total: 3.49s remaining: 2.94s
488: learn: 1.0000000 total: 3.49s remaining: 2.94s
489: learn: 1.0000000 total: 3.5s remaining: 2.93s
490: learn: 1.0000000 total: 3.51s remaining: 2.92s
491: learn: 1.0000000 total: 3.51s remaining: 2.91s
492: learn: 1.0000000 total: 3.52s remaining: 2.91s
493: learn: 1.0000000 total: 3.53s remaining: 2.9s
494: learn: 1.0000000 total: 3.53s remaining: 2.89s
495: learn: 1.0000000 total: 3.54s remaining: 2.88s
496: learn: 1.0000000 total: 3.55s remaining: 2.88s
497: learn: 1.0000000 total: 3.55s remaining: 2.87s
498: learn: 1.0000000 total: 3.56s remaining: 2.86s
499: learn: 1.0000000 total: 3.56s remaining: 2.85s
500: learn: 1.0000000 total: 3.57s remaining: 2.85s
501: learn: 1.0000000 total: 3.58s remaining: 2.84s
502: learn: 1.0000000 total: 3.58s remaining: 2.83s
503: learn: 1.0000000 total: 3.59s remaining: 2.82s
504: learn: 1.0000000 total: 3.6s remaining: 2.81s
505: learn: 1.0000000 total: 3.61s remaining: 2.81s
506: learn: 1.0000000 total: 3.61s remaining: 2.8s
507: learn: 1.0000000 total: 3.62s remaining: 2.79s
508: learn: 1.0000000 total: 3.63s remaining: 2.79s
509: learn: 1.0000000 total: 3.63s remaining: 2.78s
510: learn: 1.0000000 total: 3.65s remaining: 2.78s
511: learn: 1.0000000 total: 3.66s remaining: 2.77s
512: learn: 1.0000000 total: 3.66s remaining: 2.76s
513: learn: 1.0000000 total: 3.67s remaining: 2.75s
514: learn: 1.0000000 total: 3.68s remaining: 2.75s
515: learn: 1.0000000 total: 3.68s remaining: 2.74s
516: learn: 1.0000000 total: 3.69s remaining: 2.73s
517: learn: 1.0000000 total: 3.69s remaining: 2.73s
518: learn: 1.0000000 total: 3.7s remaining: 2.72s
519: learn: 1.0000000 total: 3.71s remaining: 2.71s
520: learn: 1.0000000 total: 3.72s remaining: 2.7s
521: learn: 1.0000000 total: 3.72s remaining: 2.7s
522: learn: 1.0000000 total: 3.73s remaining: 2.69s
523: learn: 1.0000000 total: 3.74s remaining: 2.68s
524: learn: 1.0000000 total: 3.75s remaining: 2.67s
525: learn: 1.0000000 total: 3.75s remaining: 2.67s
526: learn: 1.0000000 total: 3.76s remaining: 2.66s
527: learn: 1.0000000 total: 3.77s remaining: 2.65s
528: learn: 1.0000000 total: 3.77s remaining: 2.65s
529: learn: 1.0000000 total: 3.78s remaining: 2.64s
530: learn: 1.0000000 total: 3.79s remaining: 2.63s
531: learn: 1.0000000 total: 3.79s remaining: 2.62s
532: learn: 1.0000000 total: 3.8s remaining: 2.62s
533: learn: 1.0000000 total: 3.81s remaining: 2.61s
534: learn: 1.0000000 total: 3.81s remaining: 2.6s
535: learn: 1.0000000 total: 3.82s remaining: 2.59s
536: learn: 1.0000000 total: 3.83s remaining: 2.59s
537: learn: 1.0000000 total: 3.84s remaining: 2.58s
538: learn: 1.0000000 total: 3.84s remaining: 2.57s
539: learn: 1.0000000 total: 3.85s remaining: 2.57s
540: learn: 1.0000000 total: 3.86s remaining: 2.56s
541: learn: 1.0000000 total: 3.87s remaining: 2.55s
542: learn: 1.0000000 total: 3.87s remaining: 2.55s
543: learn: 1.0000000 total: 3.88s remaining: 2.54s
544: learn: 1.0000000 total: 3.89s remaining: 2.53s
545: learn: 1.0000000 total: 3.9s remaining: 2.52s
546: learn: 1.0000000 total: 3.9s remaining: 2.52s
547: learn: 1.0000000 total: 3.91s remaining: 2.51s
548: learn: 1.0000000 total: 3.92s remaining: 2.51s
549: learn: 1.0000000 total: 3.92s remaining: 2.5s
550: learn: 1.0000000 total: 3.93s remaining: 2.49s
551: learn: 1.0000000 total: 3.94s remaining: 2.48s
552: learn: 1.0000000 total: 3.94s remaining: 2.47s
553: learn: 1.0000000 total: 3.95s remaining: 2.47s
554: learn: 1.0000000 total: 3.96s remaining: 2.46s
555: learn: 1.0000000 total: 3.96s remaining: 2.45s
556: learn: 1.0000000 total: 3.97s remaining: 2.44s
557: learn: 1.0000000 total: 3.98s remaining: 2.44s
558: learn: 1.0000000 total: 3.99s remaining: 2.43s
559: learn: 1.0000000 total: 3.99s remaining: 2.42s
560: learn: 1.0000000 total: 4s remaining: 2.42s
561: learn: 1.0000000 total: 4.01s remaining: 2.41s
562: learn: 1.0000000 total: 4.01s remaining: 2.4s
563: learn: 1.0000000 total: 4.03s remaining: 2.4s
564: learn: 1.0000000 total: 4.04s remaining: 2.39s
565: learn: 1.0000000 total: 4.04s remaining: 2.39s
566: learn: 1.0000000 total: 4.05s remaining: 2.38s
567: learn: 1.0000000 total: 4.06s remaining: 2.37s
568: learn: 1.0000000 total: 4.07s remaining: 2.37s
569: learn: 1.0000000 total: 4.07s remaining: 2.36s
570: learn: 1.0000000 total: 4.08s remaining: 2.35s
571: learn: 1.0000000 total: 4.09s remaining: 2.34s
572: learn: 1.0000000 total: 4.09s remaining: 2.34s
573: learn: 1.0000000 total: 4.1s remaining: 2.33s
574: learn: 1.0000000 total: 4.11s remaining: 2.32s
575: learn: 1.0000000 total: 4.12s remaining: 2.31s
576: learn: 1.0000000 total: 4.12s remaining: 2.31s
577: learn: 1.0000000 total: 4.13s remaining: 2.3s
578: learn: 1.0000000 total: 4.14s remaining: 2.29s
579: learn: 1.0000000 total: 4.14s remaining: 2.29s
580: learn: 1.0000000 total: 4.15s remaining: 2.28s
581: learn: 1.0000000 total: 4.16s remaining: 2.27s
582: learn: 1.0000000 total: 4.17s remaining: 2.27s
583: learn: 1.0000000 total: 4.17s remaining: 2.26s
584: learn: 1.0000000 total: 4.18s remaining: 2.25s
585: learn: 1.0000000 total: 4.18s remaining: 2.24s
586: learn: 1.0000000 total: 4.19s remaining: 2.23s
587: learn: 1.0000000 total: 4.2s remaining: 2.23s
588: learn: 1.0000000 total: 4.21s remaining: 2.22s
589: learn: 1.0000000 total: 4.21s remaining: 2.21s
590: learn: 1.0000000 total: 4.22s remaining: 2.21s
591: learn: 1.0000000 total: 4.23s remaining: 2.2s
592: learn: 1.0000000 total: 4.24s remaining: 2.19s
593: learn: 1.0000000 total: 4.25s remaining: 2.19s
594: learn: 1.0000000 total: 4.25s remaining: 2.18s
595: learn: 1.0000000 total: 4.26s remaining: 2.17s
596: learn: 1.0000000 total: 4.27s remaining: 2.17s
597: learn: 1.0000000 total: 4.28s remaining: 2.16s
598: learn: 1.0000000 total: 4.28s remaining: 2.15s
599: learn: 1.0000000 total: 4.29s remaining: 2.15s
600: learn: 1.0000000 total: 4.3s remaining: 2.14s
601: learn: 1.0000000 total: 4.31s remaining: 2.13s
602: learn: 1.0000000 total: 4.32s remaining: 2.13s
603: learn: 1.0000000 total: 4.33s remaining: 2.12s
604: learn: 1.0000000 total: 4.33s remaining: 2.11s
605: learn: 1.0000000 total: 4.34s remaining: 2.1s
606: learn: 1.0000000 total: 4.35s remaining: 2.1s
607: learn: 1.0000000 total: 4.36s remaining: 2.09s
608: learn: 1.0000000 total: 4.36s remaining: 2.08s
609: learn: 1.0000000 total: 4.37s remaining: 2.08s
610: learn: 1.0000000 total: 4.38s remaining: 2.07s
611: learn: 1.0000000 total: 4.38s remaining: 2.06s
612: learn: 1.0000000 total: 4.39s remaining: 2.06s
613: learn: 1.0000000 total: 4.4s remaining: 2.05s
614: learn: 1.0000000 total: 4.41s remaining: 2.04s
615: learn: 1.0000000 total: 4.41s remaining: 2.03s
616: learn: 1.0000000 total: 4.42s remaining: 2.03s
617: learn: 1.0000000 total: 4.43s remaining: 2.02s
618: learn: 1.0000000 total: 4.43s remaining: 2.01s
619: learn: 1.0000000 total: 4.44s remaining: 2s
620: learn: 1.0000000 total: 4.45s remaining: 2s
621: learn: 1.0000000 total: 4.46s remaining: 1.99s
622: learn: 1.0000000 total: 4.46s remaining: 1.98s
623: learn: 1.0000000 total: 4.47s remaining: 1.98s
624: learn: 1.0000000 total: 4.48s remaining: 1.97s
625: learn: 1.0000000 total: 4.49s remaining: 1.96s
626: learn: 1.0000000 total: 4.49s remaining: 1.96s
627: learn: 1.0000000 total: 4.5s remaining: 1.95s
628: learn: 1.0000000 total: 4.51s remaining: 1.94s
629: learn: 1.0000000 total: 4.51s remaining: 1.93s
630: learn: 1.0000000 total: 4.52s remaining: 1.93s
631: learn: 1.0000000 total: 4.53s remaining: 1.92s
632: learn: 1.0000000 total: 4.54s remaining: 1.91s
633: learn: 1.0000000 total: 4.54s remaining: 1.91s
634: learn: 1.0000000 total: 4.55s remaining: 1.9s
635: learn: 1.0000000 total: 4.56s remaining: 1.89s
636: learn: 1.0000000 total: 4.57s remaining: 1.89s
637: learn: 1.0000000 total: 4.57s remaining: 1.88s
638: learn: 1.0000000 total: 4.58s remaining: 1.87s
639: learn: 1.0000000 total: 4.59s remaining: 1.86s
640: learn: 1.0000000 total: 4.59s remaining: 1.86s
641: learn: 1.0000000 total: 4.61s remaining: 1.85s
642: learn: 1.0000000 total: 4.61s remaining: 1.84s
643: learn: 1.0000000 total: 4.62s remaining: 1.84s
644: learn: 1.0000000 total: 4.63s remaining: 1.83s
645: learn: 1.0000000 total: 4.63s remaining: 1.82s
646: learn: 1.0000000 total: 4.64s remaining: 1.81s
647: learn: 1.0000000 total: 4.65s remaining: 1.81s
648: learn: 1.0000000 total: 4.65s remaining: 1.8s
649: learn: 1.0000000 total: 4.66s remaining: 1.79s
650: learn: 1.0000000 total: 4.67s remaining: 1.78s
651: learn: 1.0000000 total: 4.67s remaining: 1.78s
652: learn: 1.0000000 total: 4.68s remaining: 1.77s
653: learn: 1.0000000 total: 4.69s remaining: 1.76s
654: learn: 1.0000000 total: 4.69s remaining: 1.75s
655: learn: 1.0000000 total: 4.7s remaining: 1.75s
656: learn: 1.0000000 total: 4.71s remaining: 1.74s
657: learn: 1.0000000 total: 4.72s remaining: 1.73s
658: learn: 1.0000000 total: 4.72s remaining: 1.73s
659: learn: 1.0000000 total: 4.73s remaining: 1.72s
660: learn: 1.0000000 total: 4.74s remaining: 1.71s
661: learn: 1.0000000 total: 4.74s remaining: 1.7s
662: learn: 1.0000000 total: 4.75s remaining: 1.7s
663: learn: 1.0000000 total: 4.76s remaining: 1.69s
664: learn: 1.0000000 total: 4.76s remaining: 1.68s
665: learn: 1.0000000 total: 4.77s remaining: 1.68s
666: learn: 1.0000000 total: 4.78s remaining: 1.67s
667: learn: 1.0000000 total: 4.79s remaining: 1.66s
668: learn: 1.0000000 total: 4.8s remaining: 1.66s
669: learn: 1.0000000 total: 4.8s remaining: 1.65s
670: learn: 1.0000000 total: 4.81s remaining: 1.64s
671: learn: 1.0000000 total: 4.82s remaining: 1.63s
672: learn: 1.0000000 total: 4.82s remaining: 1.63s
673: learn: 1.0000000 total: 4.83s remaining: 1.62s
674: learn: 1.0000000 total: 4.84s remaining: 1.61s
675: learn: 1.0000000 total: 4.84s remaining: 1.6s
676: learn: 1.0000000 total: 4.85s remaining: 1.6s
677: learn: 1.0000000 total: 4.86s remaining: 1.59s
678: learn: 1.0000000 total: 4.87s remaining: 1.58s
679: learn: 1.0000000 total: 4.87s remaining: 1.57s
680: learn: 1.0000000 total: 4.88s remaining: 1.57s
681: learn: 1.0000000 total: 4.88s remaining: 1.56s
682: learn: 1.0000000 total: 4.89s remaining: 1.55s
683: learn: 1.0000000 total: 4.9s remaining: 1.55s
684: learn: 1.0000000 total: 4.9s remaining: 1.54s
685: learn: 1.0000000 total: 4.91s remaining: 1.53s
686: learn: 1.0000000 total: 4.92s remaining: 1.52s
687: learn: 1.0000000 total: 4.93s remaining: 1.52s
688: learn: 1.0000000 total: 4.93s remaining: 1.51s
689: learn: 1.0000000 total: 4.94s remaining: 1.5s
690: learn: 1.0000000 total: 4.95s remaining: 1.5s
691: learn: 1.0000000 total: 4.96s remaining: 1.49s
692: learn: 1.0000000 total: 4.96s remaining: 1.48s
693: learn: 1.0000000 total: 4.97s remaining: 1.48s
694: learn: 1.0000000 total: 4.98s remaining: 1.47s
695: learn: 1.0000000 total: 4.99s remaining: 1.46s
696: learn: 1.0000000 total: 5s remaining: 1.46s
697: learn: 1.0000000 total: 5s remaining: 1.45s
698: learn: 1.0000000 total: 5.01s remaining: 1.44s
699: learn: 1.0000000 total: 5.02s remaining: 1.43s
700: learn: 1.0000000 total: 5.03s remaining: 1.43s
701: learn: 1.0000000 total: 5.04s remaining: 1.42s
702: learn: 1.0000000 total: 5.04s remaining: 1.41s
703: learn: 1.0000000 total: 5.05s remaining: 1.41s
704: learn: 1.0000000 total: 5.06s remaining: 1.4s
705: learn: 1.0000000 total: 5.07s remaining: 1.39s
706: learn: 1.0000000 total: 5.07s remaining: 1.38s
707: learn: 1.0000000 total: 5.08s remaining: 1.38s
708: learn: 1.0000000 total: 5.09s remaining: 1.37s
709: learn: 1.0000000 total: 5.1s remaining: 1.36s
710: learn: 1.0000000 total: 5.1s remaining: 1.36s
711: learn: 1.0000000 total: 5.11s remaining: 1.35s
712: learn: 1.0000000 total: 5.12s remaining: 1.34s
713: learn: 1.0000000 total: 5.13s remaining: 1.33s
714: learn: 1.0000000 total: 5.13s remaining: 1.33s
715: learn: 1.0000000 total: 5.14s remaining: 1.32s
716: learn: 1.0000000 total: 5.14s remaining: 1.31s
717: learn: 1.0000000 total: 5.15s remaining: 1.31s
718: learn: 1.0000000 total: 5.16s remaining: 1.3s
719: learn: 1.0000000 total: 5.17s remaining: 1.29s
720: learn: 1.0000000 total: 5.17s remaining: 1.28s
721: learn: 1.0000000 total: 5.18s remaining: 1.28s
722: learn: 1.0000000 total: 5.19s remaining: 1.27s
723: learn: 1.0000000 total: 5.2s remaining: 1.26s
724: learn: 1.0000000 total: 5.21s remaining: 1.26s
725: learn: 1.0000000 total: 5.21s remaining: 1.25s
726: learn: 1.0000000 total: 5.22s remaining: 1.24s
727: learn: 1.0000000 total: 5.22s remaining: 1.23s
728: learn: 1.0000000 total: 5.23s remaining: 1.23s
729: learn: 1.0000000 total: 5.24s remaining: 1.22s
730: learn: 1.0000000 total: 5.25s remaining: 1.21s
731: learn: 1.0000000 total: 5.26s remaining: 1.21s
732: learn: 1.0000000 total: 5.26s remaining: 1.2s
733: learn: 1.0000000 total: 5.27s remaining: 1.19s
734: learn: 1.0000000 total: 5.28s remaining: 1.18s
735: learn: 1.0000000 total: 5.28s remaining: 1.18s
736: learn: 1.0000000 total: 5.29s remaining: 1.17s
737: learn: 1.0000000 total: 5.3s remaining: 1.16s
738: learn: 1.0000000 total: 5.3s remaining: 1.16s
739: learn: 1.0000000 total: 5.31s remaining: 1.15s
740: learn: 1.0000000 total: 5.32s remaining: 1.14s
741: learn: 1.0000000 total: 5.33s remaining: 1.13s
742: learn: 1.0000000 total: 5.33s remaining: 1.13s
743: learn: 1.0000000 total: 5.34s remaining: 1.12s
744: learn: 1.0000000 total: 5.34s remaining: 1.11s
745: learn: 1.0000000 total: 5.35s remaining: 1.1s
746: learn: 1.0000000 total: 5.36s remaining: 1.1s
747: learn: 1.0000000 total: 5.37s remaining: 1.09s
748: learn: 1.0000000 total: 5.38s remaining: 1.08s
749: learn: 1.0000000 total: 5.39s remaining: 1.08s
750: learn: 1.0000000 total: 5.39s remaining: 1.07s
751: learn: 1.0000000 total: 5.4s remaining: 1.06s
752: learn: 1.0000000 total: 5.41s remaining: 1.05s
753: learn: 1.0000000 total: 5.41s remaining: 1.05s
754: learn: 1.0000000 total: 5.42s remaining: 1.04s
755: learn: 1.0000000 total: 5.42s remaining: 1.03s
756: learn: 1.0000000 total: 5.43s remaining: 1.02s
757: learn: 1.0000000 total: 5.44s remaining: 1.02s
758: learn: 1.0000000 total: 5.44s remaining: 1.01s
759: learn: 1.0000000 total: 5.45s remaining: 1s
760: learn: 1.0000000 total: 5.46s remaining: 997ms
761: learn: 1.0000000 total: 5.46s remaining: 990ms
762: learn: 1.0000000 total: 5.47s remaining: 983ms
763: learn: 1.0000000 total: 5.48s remaining: 976ms
764: learn: 1.0000000 total: 5.49s remaining: 968ms
765: learn: 1.0000000 total: 5.49s remaining: 961ms
766: learn: 1.0000000 total: 5.5s remaining: 954ms
767: learn: 1.0000000 total: 5.51s remaining: 947ms
768: learn: 1.0000000 total: 5.52s remaining: 940ms
769: learn: 1.0000000 total: 5.53s remaining: 933ms
770: learn: 1.0000000 total: 5.53s remaining: 926ms
771: learn: 1.0000000 total: 5.54s remaining: 919ms
772: learn: 1.0000000 total: 5.55s remaining: 912ms
773: learn: 1.0000000 total: 5.56s remaining: 905ms
774: learn: 1.0000000 total: 5.57s remaining: 898ms
775: learn: 1.0000000 total: 5.58s remaining: 892ms
776: learn: 1.0000000 total: 5.59s remaining: 884ms
777: learn: 1.0000000 total: 5.59s remaining: 877ms
778: learn: 1.0000000 total: 5.6s remaining: 870ms
779: learn: 1.0000000 total: 5.61s remaining: 863ms
780: learn: 1.0000000 total: 5.62s remaining: 856ms
781: learn: 1.0000000 total: 5.63s remaining: 849ms
782: learn: 1.0000000 total: 5.63s remaining: 842ms
783: learn: 1.0000000 total: 5.64s remaining: 835ms
784: learn: 1.0000000 total: 5.65s remaining: 827ms
785: learn: 1.0000000 total: 5.66s remaining: 820ms
786: learn: 1.0000000 total: 5.66s remaining: 813ms
787: learn: 1.0000000 total: 5.67s remaining: 805ms
788: learn: 1.0000000 total: 5.67s remaining: 798ms
789: learn: 1.0000000 total: 5.68s remaining: 791ms
790: learn: 1.0000000 total: 5.68s remaining: 783ms
791: learn: 1.0000000 total: 5.69s remaining: 776ms
792: learn: 1.0000000 total: 5.7s remaining: 769ms
793: learn: 1.0000000 total: 5.7s remaining: 761ms
794: learn: 1.0000000 total: 5.71s remaining: 754ms
795: learn: 1.0000000 total: 5.72s remaining: 747ms
796: learn: 1.0000000 total: 5.73s remaining: 740ms
797: learn: 1.0000000 total: 5.74s remaining: 733ms
798: learn: 1.0000000 total: 5.74s remaining: 726ms
799: learn: 1.0000000 total: 5.75s remaining: 719ms
800: learn: 1.0000000 total: 5.76s remaining: 712ms
801: learn: 1.0000000 total: 5.77s remaining: 705ms
802: learn: 1.0000000 total: 5.78s remaining: 698ms
803: learn: 1.0000000 total: 5.79s remaining: 691ms
804: learn: 1.0000000 total: 5.79s remaining: 684ms
805: learn: 1.0000000 total: 5.8s remaining: 677ms
806: learn: 1.0000000 total: 5.81s remaining: 670ms
807: learn: 1.0000000 total: 5.82s remaining: 663ms
808: learn: 1.0000000 total: 5.83s remaining: 656ms
809: learn: 1.0000000 total: 5.83s remaining: 648ms
810: learn: 1.0000000 total: 5.84s remaining: 641ms
811: learn: 1.0000000 total: 5.85s remaining: 634ms
812: learn: 1.0000000 total: 5.86s remaining: 627ms
813: learn: 1.0000000 total: 5.86s remaining: 620ms
814: learn: 1.0000000 total: 5.87s remaining: 612ms
815: learn: 1.0000000 total: 5.88s remaining: 605ms
816: learn: 1.0000000 total: 5.88s remaining: 598ms
817: learn: 1.0000000 total: 5.89s remaining: 590ms
818: learn: 1.0000000 total: 5.89s remaining: 583ms
819: learn: 1.0000000 total: 5.9s remaining: 576ms
820: learn: 1.0000000 total: 5.91s remaining: 569ms
821: learn: 1.0000000 total: 5.92s remaining: 561ms
822: learn: 1.0000000 total: 5.92s remaining: 554ms
823: learn: 1.0000000 total: 5.93s remaining: 547ms
824: learn: 1.0000000 total: 5.94s remaining: 540ms
825: learn: 1.0000000 total: 5.95s remaining: 533ms
826: learn: 1.0000000 total: 5.95s remaining: 525ms
827: learn: 1.0000000 total: 5.96s remaining: 518ms
828: learn: 1.0000000 total: 5.97s remaining: 511ms
829: learn: 1.0000000 total: 5.98s remaining: 504ms
830: learn: 1.0000000 total: 5.99s remaining: 497ms
831: learn: 1.0000000 total: 6s remaining: 490ms
832: learn: 1.0000000 total: 6s remaining: 483ms
833: learn: 1.0000000 total: 6.01s remaining: 476ms
834: learn: 1.0000000 total: 6.01s remaining: 468ms
835: learn: 1.0000000 total: 6.02s remaining: 461ms
836: learn: 1.0000000 total: 6.03s remaining: 454ms
837: learn: 1.0000000 total: 6.04s remaining: 447ms
838: learn: 1.0000000 total: 6.05s remaining: 440ms
839: learn: 1.0000000 total: 6.05s remaining: 432ms
840: learn: 1.0000000 total: 6.06s remaining: 425ms
841: learn: 1.0000000 total: 6.07s remaining: 418ms
842: learn: 1.0000000 total: 6.08s remaining: 411ms
843: learn: 1.0000000 total: 6.08s remaining: 404ms
844: learn: 1.0000000 total: 6.09s remaining: 397ms
845: learn: 1.0000000 total: 6.1s remaining: 389ms
846: learn: 1.0000000 total: 6.11s remaining: 382ms
847: learn: 1.0000000 total: 6.11s remaining: 375ms
848: learn: 1.0000000 total: 6.12s remaining: 368ms
849: learn: 1.0000000 total: 6.13s remaining: 361ms
850: learn: 1.0000000 total: 6.14s remaining: 353ms
851: learn: 1.0000000 total: 6.14s remaining: 346ms
852: learn: 1.0000000 total: 6.15s remaining: 339ms
853: learn: 1.0000000 total: 6.17s remaining: 332ms
854: learn: 1.0000000 total: 6.17s remaining: 325ms
855: learn: 1.0000000 total: 6.18s remaining: 318ms
856: learn: 1.0000000 total: 6.19s remaining: 310ms
857: learn: 1.0000000 total: 6.19s remaining: 303ms
858: learn: 1.0000000 total: 6.2s remaining: 296ms
859: learn: 1.0000000 total: 6.21s remaining: 289ms
860: learn: 1.0000000 total: 6.22s remaining: 282ms
861: learn: 1.0000000 total: 6.22s remaining: 274ms
862: learn: 1.0000000 total: 6.23s remaining: 267ms
863: learn: 1.0000000 total: 6.24s remaining: 260ms
864: learn: 1.0000000 total: 6.24s remaining: 253ms
865: learn: 1.0000000 total: 6.25s remaining: 245ms
866: learn: 1.0000000 total: 6.25s remaining: 238ms
867: learn: 1.0000000 total: 6.26s remaining: 231ms
868: learn: 1.0000000 total: 6.27s remaining: 224ms
869: learn: 1.0000000 total: 6.27s remaining: 216ms
870: learn: 1.0000000 total: 6.28s remaining: 209ms
871: learn: 1.0000000 total: 6.29s remaining: 202ms
872: learn: 1.0000000 total: 6.3s remaining: 195ms
873: learn: 1.0000000 total: 6.3s remaining: 188ms
874: learn: 1.0000000 total: 6.31s remaining: 180ms
875: learn: 1.0000000 total: 6.32s remaining: 173ms
876: learn: 1.0000000 total: 6.33s remaining: 166ms
877: learn: 1.0000000 total: 6.33s remaining: 159ms
878: learn: 1.0000000 total: 6.34s remaining: 151ms
879: learn: 1.0000000 total: 6.35s remaining: 144ms
880: learn: 1.0000000 total: 6.36s remaining: 137ms
881: learn: 1.0000000 total: 6.36s remaining: 130ms
882: learn: 1.0000000 total: 6.37s remaining: 123ms
883: learn: 1.0000000 total: 6.38s remaining: 116ms
884: learn: 1.0000000 total: 6.39s remaining: 108ms
885: learn: 1.0000000 total: 6.4s remaining: 101ms
886: learn: 1.0000000 total: 6.4s remaining: 93.9ms
887: learn: 1.0000000 total: 6.41s remaining: 86.6ms
888: learn: 1.0000000 total: 6.42s remaining: 79.4ms
889: learn: 1.0000000 total: 6.42s remaining: 72.2ms
890: learn: 1.0000000 total: 6.43s remaining: 64.9ms
891: learn: 1.0000000 total: 6.44s remaining: 57.7ms
892: learn: 1.0000000 total: 6.45s remaining: 50.5ms
893: learn: 1.0000000 total: 6.45s remaining: 43.3ms
894: learn: 1.0000000 total: 6.46s remaining: 36.1ms
895: learn: 1.0000000 total: 6.46s remaining: 28.9ms
896: learn: 1.0000000 total: 6.47s remaining: 21.7ms
897: learn: 1.0000000 total: 6.48s remaining: 14.4ms
898: learn: 1.0000000 total: 6.49s remaining: 7.22ms
899: learn: 1.0000000 total: 6.5s remaining: 0us
GridSearchCV(cv=2,In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.estimator=<catboost.core.CatBoostClassifier object at 0x00000164A0B7E3D0>, n_jobs=-1, param_grid={'border_count': [12], 'min_data_in_leaf': [100]}, scoring='accuracy', verbose=1)
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
GridSearchCV(cv=2, estimator=<catboost.core.CatBoostClassifier object at 0x00000164A0B7E3D0>, n_jobs=-1, param_grid={'border_count': [12], 'min_data_in_leaf': [100]}, scoring='accuracy', verbose=1)
<catboost.core.CatBoostClassifier object at 0x00000164A0B7E3D0>
<catboost.core.CatBoostClassifier object at 0x00000164A0B7E3D0>
print(clf.best_params_)
{'border_count': 12, 'min_data_in_leaf': 100}
model=clf.best_estimator_
model_eval(model, train, test)
train_roc_auc_score: 0.9999284349660532
test_roc_auc_score: 0.7438226744186047
train_accuracy_score: 0.9985714285714286
test_accuracy_score: 0.7016666666666667
train_precision_score: 0.9974715549936789
test__precision_score: 0.7298050139275766
train_recall_score: 1.0
test_recall_score: 0.7616279069767442
train_f1_score: 0.9987341772151899
test_f1_score: 0.7453769559032717
model.predict(train)
array([1, 1, 1, ..., 1, 1, 1], dtype=int64)
model.predict_proba(train)
array([[0.00437277, 0.99562723],
[0.00522084, 0.99477916],
[0.02550793, 0.97449207],
...,
[0.0098453 , 0.9901547 ],
[0.09563274, 0.90436726],
[0.00210313, 0.99789687]])
joblib.dump(clf , r'D:\Ensemble_Learning\catboost_info\catboostgrid.model')
load_model=joblib.load(r'D:\Ensemble_Learning\catboost_info\catboostgrid.model')
load_model.predict( test.values )
load_model.predict_proba(test.values )
array([[0.9088261 , 0.0911739 ],
[0.25607168, 0.74392832],
[0.0904113 , 0.9095887 ],
...,
[0.00316616, 0.99683384],
[0.76160727, 0.23839273],
[0.97218793, 0.02781207]])