Attention学习笔记

解读Squeeze-and-Excitation Networks(SENet)

https://zhuanlan.zhihu.com/p/32702350
Attention学习笔记_第1张图片
作者要利用的是通道间的相关性,而不是空间分布中的相关性,用GAP屏蔽掉空间上的分布信息能让scale的计算更加准确。

Attention学习笔记_第2张图片
Excitation部分是用2个全连接来实现 ,第一个全连接把C个通道压缩成了C/r个通道来降低计算量(后面跟了RELU),第二个全连接再恢复回C个通道(后面跟了Sigmoid),r是指压缩的比例。作者尝试了r在各种取值下的性能 ,最后得出结论r=16时整体性能和计算量最平衡。
为什么要加全连接层呢?这是为了利用通道间的相关性来训练出真正的scale。一次mini-batch个样本的squeeze输出并不代表通道真实要调整的scale值,真实的scale要基于全部数据集来训练得出,而不是基于单个batch,所以后面要加个全连接层来进行训练。可以拿SE Block和下面3种错误的结构比较来进一步理解:
图2最上方的结构,squeeze的输出直接scale到输入上,没有了全连接层,某个通道的调整值完全基于单个通道GAP的结果,事实上只有GAP的分支是完全没有反向计算、没有训练的过程的,就无法基于全部数据集来训练得出通道增强、减弱的规律。
图2中间是经典的卷积结构,有人会说卷积训练出的权值就含有了scale的成分在里面,也利用了通道间的相关性,为啥还要多个SE Block?那是因为这种卷积有空间的成分在里面,为了排除空间上的干扰就得先用GAP压缩成一个点后再作卷积,压缩后因为没有了Height、Width的成分,这种卷积就是全连接了。
图2最下面的结构,SE模块和传统的卷积间采用并联而不是串联的方式,这时SE利用的是Ftr输入X的相关性来计算scale,X和U的相关性是不同的,把根据X的相关性计算出的scale应用到U上明显不合适。

理解 Deformable Convolutional Networks

https://zhuanlan.zhihu.com/p/52476083

https://blog.csdn.net/qq_21997625/article/details/84899914
代码来源:
https://github.com/oeway/pytorch-deform-conv/blob/master/tests/test_deform_conv.py
插值计算处代码

def th_batch_map_offsets(input, offsets, grid=None, order=1):
    """Batch map offsets into input
    Parameters
    ---------
    input : torch.Tensor. shape = (b, s, s)
    offsets: torch.Tensor. shape = (b, s, s, 2)
    grid: (b*c, h*w, 2)
    Returns
    -------
    torch.Tensor. shape = (b, s, s)
    """
    batch_size = input.size(0)
    input_size = [input.size(1), input.size(2)]

    # (b, h*w, 2)
    offsets = offsets.view(batch_size, -1, 2)
    if grid is None:
        # grid:(b*c, h*w, 2)
        grid = th_generate_grid(batch_size, input_size, offsets.data.type(), offsets.data.is_cuda)
    # (b*c, h*w, 2)
    coords = offsets + grid
    # (b*c, h*w)| (b*c, h*w), (b*c, h*w, c)
    mapped_vals = th_batch_map_coordinates(input, coords)

    return mapped_vals

def th_batch_map_coordinates(input, coords, order=1):
    """Batch version of th_map_coordinates
    Only supports 2D feature maps
    Parameters
    ----------
    input : tf.Tensor. shape = (b, s, s)
    coords : tf.Tensor. shape = (b, n_points, 2)
    Returns
    -------
    tf.Tensor. shape = (b, s, s)
    """

    batch_size = input.size(0)
    input_size = input.size(1)
    n_coords = coords.size(1)

    coords = torch.clamp(coords, 0, input_size - 1)
    coords_lt = coords.floor().long()
    coords_rb = coords.ceil().long()
    coords_lb = torch.stack([coords_lt[..., 0], coords_rb[..., 1]], 2)
    coords_rt = torch.stack([coords_rb[..., 0], coords_lt[..., 1]], 2)
    idx = th_repeat(torch.arange(0, batch_size), n_coords).long()  ## 为batch里的每一个数据 构建n_coords个索引
    idx = Variable(idx, requires_grad=False)
    if input.is_cuda:
        idx = idx.cuda(cfg.cuda_num)

    def _get_vals_by_coords(input, coords):
        indices = torch.stack([
            idx, th_flatten(coords[..., 0]), th_flatten(coords[..., 1])
        ], 1)
        inds = indices[:, 0] * input.size(1) * input.size(2) + indices[:, 1] * input.size(2) + indices[:, 2]  ## 这个地方是把展平之后的tensor做定位,找到某一个位置的索引
        vals = th_flatten(input).index_select(0, inds)
        vals = vals.view(batch_size, n_coords)
        return vals

    vals_lt = _get_vals_by_coords(input, coords_lt.detach())
    vals_rb = _get_vals_by_coords(input, coords_rb.detach())
    vals_lb = _get_vals_by_coords(input, coords_lb.detach())
    vals_rt = _get_vals_by_coords(input, coords_rt.detach())

    coords_offset_lt = coords - coords_lt.type(coords.data.type())### 注意 这个地方都是小数
    vals_t = coords_offset_lt[..., 0] * (vals_rt - vals_lt) + vals_lt## x轴插值
    vals_b = coords_offset_lt[..., 0] * (vals_rb - vals_lb) + vals_lb## x轴插值
    mapped_vals = coords_offset_lt[..., 1] * (vals_b - vals_t) + vals_t## 两个插值点再插值
    return mapped_vals

1.Selective Kernel Networks

Attention学习笔记_第3张图片
https://github.com/TeodorPoncu/selective-kernel-conv/blob/main/selective_conv.py

import torch
from torch import nn
from torch.nn import functional as F

class SelectiveConv(nn.Module):
    """
    Implementation of the Selective Convolution Layer used in Selective Kernel Networks
    https://arxiv.org/pdf/1903.06586.pdf
    """

    def __init__(self, in_channels: int, out_channels: int, groups: int, ratio: int = 16, paths: int = 2):
        super(SelectiveConv, self).__init__()

        self.reduced_dim = max(out_channels // ratio, 32)
        self.paths = paths
        self.convs = []

        for i in range(paths):
            self.convs.append(nn.Sequential(*[
                nn.Conv2d(in_channels, out_channels, groups=groups, kernel_size=3, dilation=1 + i, padding=1 + i),
                nn.BatchNorm2d(out_channels),
                nn.ReLU()
            ]))

        self.convs = nn.ModuleList(self.convs)

        self.flatten = nn.Sequential(*[
            nn.AdaptiveAvgPool2d(output_size=(1, 1)),
            Flatten(),
        ])

        self.compress = nn.Sequential(*[
            nn.Linear(out_channels, self.reduced_dim),
            nn.BatchNorm1d(self.reduced_dim),
            nn.ReLU(),
        ])

        # using a 1x1 conv for Z reprojection
        self.projections = nn.ModuleList([nn.Conv2d(self.reduced_dim, out_channels, 1) for _ in range(paths)])

    def forward(self, x: torch.Tensor):
        b, _, h, w = x.shape

        # pass through all convolutions
        features = torch.cat([conv(x) for conv in self.convs], dim=1)

        # sum features across path dimension
        features = features.view(features.shape[0], self.paths, -1, h, w)
        fused_x = features.sum(dim=1)

        #print(fused_x.shape)
        _, c, _, _ = fused_x.shape

        # flatten and compress fused features
        fused_flat = self.flatten(fused_x)
        fused_compress = self.compress(fused_flat)

        # reproject the compression in order to compute channel-wise attention scores
        attention_scores = torch.cat([projection(fused_compress[:, :, None, None]) for projection in self.projections], dim=1)

        # compute path-wise softmax for each channel
        attention_scores = attention_scores.view(b, self.paths, c, 1, 1)
        attention_scores = F.softmax(attention_scores, dim=1)

        # scale features with attention and fuse them back
        features = features * attention_scores
        features = features.sum(dim=1)
        return features


class Flatten(nn.Module):
    def __init__(self):
        super(Flatten, self).__init__()

    def forward(self, x: torch.Tensor):
        return x.view(x.shape[0], -1)

2.Iterative Attentional Feature Fusion

https://github.com/YimianDai/open-aff/tree/master/aff_pytorch
Attention学习笔记_第4张图片
在这里插入图片描述
Attention学习笔记_第5张图片

Attention学习笔记_第6张图片
Attention学习笔记_第7张图片

import torch
import torch.nn as nn


class DAF(nn.Module):
    '''
    直接相加 DirectAddFuse
    '''

    def __init__(self):
        super(DAF, self).__init__()

    def forward(self, x, residual):
        return x + residual


class iAFF(nn.Module):
    '''
    多特征融合 iAFF
    '''

    def __init__(self, channels=64, r=4):
        super(iAFF, self).__init__()
        inter_channels = int(channels // r)

        # 本地注意力
        self.local_att = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        # 全局注意力
        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        # 第二次本地注意力
        self.local_att2 = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )
        # 第二次全局注意力
        self.global_att2 = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.sigmoid = nn.Sigmoid()

    def forward(self, x, residual):
        xa = x + residual
        xl = self.local_att(xa)
        xg = self.global_att(xa)
        xlg = xl + xg
        wei = self.sigmoid(xlg)
        xi = x * wei + residual * (1 - wei)

        xl2 = self.local_att2(xi)
        xg2 = self.global_att(xi)
        xlg2 = xl2 + xg2
        wei2 = self.sigmoid(xlg2)
        xo = x * wei2 + residual * (1 - wei2)
        return xo


class AFF(nn.Module):
    '''
    多特征融合 AFF
    '''

    def __init__(self, channels=64, r=4):
        super(AFF, self).__init__()
        inter_channels = int(channels // r)

        self.local_att = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.sigmoid = nn.Sigmoid()

    def forward(self, x, residual):
        xa = x + residual
        xl = self.local_att(xa)
        xg = self.global_att(xa)
        xlg = xl + xg
        wei = self.sigmoid(xlg)

        xo = 2 * x * wei + 2 * residual * (1 - wei)
        return xo


class MS_CAM(nn.Module):
    '''
    单特征 进行通道加权,作用类似SE模块
    '''

    def __init__(self, channels=64, r=4):
        super(MS_CAM, self).__init__()
        inter_channels = int(channels // r)

        self.local_att = nn.Sequential(
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(inter_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(channels),
        )

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        xl = self.local_att(x)
        xg = self.global_att(x)
        xlg = xl + xg
        wei = self.sigmoid(xlg)
        return x * wei



# if __name__ == '__main__':
#     import os
#     os.environ['CUDA_VISIBLE_DEVICES'] = "0"
#     device = torch.device("cuda:0")
#
#     x, residual= torch.ones(8,64, 32, 32).to(device),torch.ones(8,64, 32, 32).to(device)
#     channels=x.shape[1]
#
#     model=AFF(channels=channels)
#     model=model.to(device).train()
#     output = model(x, residual)
#     print(output.shape)

Gated Channel Transformation for Visual Recognition

https://github.com/z-x-yang/GCT/blob/68983edd87/PyTorch/GCT.py
Attention学习笔记_第8张图片
Attention学习笔记_第9张图片

import torch
import torch.nn.functional as F
import math
from torch import nn


class GCT(nn.Module):

    def __init__(self, num_channels, epsilon=1e-5, mode='l2', after_relu=False):
        super(GCT, self).__init__()

        self.alpha = nn.Parameter(torch.ones(1, num_channels, 1, 1))
        self.gamma = nn.Parameter(torch.zeros(1, num_channels, 1, 1))
        self.beta = nn.Parameter(torch.zeros(1, num_channels, 1, 1))
        self.epsilon = epsilon
        self.mode = mode
        self.after_relu = after_relu

    def forward(self, x):

        if self.mode == 'l2':
            embedding = (x.pow(2).sum((2,3), keepdim=True) + self.epsilon).pow(0.5) * self.alpha
            norm = self.gamma / (embedding.pow(2).mean(dim=1, keepdim=True) + self.epsilon).pow(0.5)
            
        elif self.mode == 'l1':
            if not self.after_relu:
                _x = torch.abs(x)
            else:
                _x = x
            embedding = _x.sum((2,3), keepdim=True) * self.alpha
            norm = self.gamma / (torch.abs(embedding).mean(dim=1, keepdim=True) + self.epsilon)
        else:
            print('Unknown mode!')
            sys.exit()

        gate = 1. + torch.tanh(embedding * norm + self.beta)

        return x * gate

你可能感兴趣的:(pytorch,计算机视觉)