目录
1 整体框架分析
1.1 Focus
1.2 Conv模块
1.3 Bottleneck模块
1.4 C3模块 跨尺度连接
1.5 SPP:空间金字塔池化
1.6 Concat
2 更改网络架构
2.2 小目标
2.1 轻量化
Backbone作用:特征提取
Neck作用:对特征进行一波混合与组合,并且把这些特征传递给预测层
Head作用:进行最终的预测输出
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8 stride=8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
backbone:
# [from, number, module, args]
# from表示当前模块的输入来自那一层的输出,-1表示来自上一层的输出
# number表示本模块重复的次数,1表示只有一个,3表示重复3次
# module: 模块名
[[-1, 1, Focus, [64, 3]], # 0-P1/2 [3, 32, 3]
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [32, 64, 3, 2]
[-1, 3, C3, [128]], # 2 [64, 64, 1]
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [64, 128, 3, 2]
[-1, 9, C3, [256]], # 4 [128, 128, 3]
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [128, 256, 3, 2]
[-1, 9, C3, [512]], # 6 [256, 256, 3]
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [256, 512, 3, 2]
[-1, 1, SPP, [1024, [5, 9, 13]]], # 8 [512, 512, [5, 9, 13]]
[-1, 3, C3, [1024, False]], # 9 [512, 512, 1, False]
# [nc, anchors, 3个Detect的输出channel]
# [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
]
head:
[[-1, 1, Conv, [512, 1, 1]], # 10 [512, 256, 1, 1]
[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11 [None, 2, 'nearest']
[[-1, 6], 1, Concat, [1]], # 12 cat backbone P4 [1]
[-1, 3, C3, [512, False]], # 13 [512, 256, 1, False]
[-1, 1, Conv, [256, 1, 1]], # 14 [256, 128, 1, 1]
[-1, 1, nn.Upsample, [None, 2, 'nearest']], #15 [None, 2, 'nearest']
[[-1, 4], 1, Concat, [1]], # 16 cat backbone P3 [1]
[-1, 3, C3, [256, False]], # 17 (P3/8-small) [256, 128, 1, False]
[-1, 1, Conv, [256, 3, 2]], # 18 [128, 128, 3, 2]
[[-1, 14], 1, Concat, [1]], # 19 cat head P4 [1]
[-1, 3, C3, [512, False]], # 20 (P4/16-medium) [256, 256, 1, False]
[-1, 1, Conv, [512, 3, 2]], # 21 [256, 256, 3, 2]
[[-1, 10], 1, Concat, [1]], # 22 cat head P5 [1]
[-1, 3, C3, [1024, False]], # 23 (P5/32-large) [512, 512, 1, False]
[[17, 20, 23], 1, Detect, [nc, anchors]], # 24 Detect(P3, P4, P5)
]
作用:下采样
Focus模块的作用是对图片进行切片,类似于下采样,先将图片变为320×320×12的特征图,再经过3×3的卷积操作,输出通道32,最终变为320×320×32的特征图,是一般卷积计算量的4倍,如此做下采样将无信息丢失。
输入:3x640x640
输出:32×320×320
作用:卷积,步长为2下采样,步长为1大小不变
对输入的特征图执行卷积
,BN
,激活函数
操作,在新版的YOLOv5中,作者使用Silu
作为激活函数。
作用:为了降低参数量
利用多个小卷积核替代一个大卷积核,先将channel 数减小再扩大(默认减小到一半),具体做法是先进行1×1卷积将channel减小一半,再通过3×3卷积将通道数加倍,并获取特征(共使用两个标准卷积模块),其输入与输出的通道数是不发生改变的。
作用:残差结构,让模型学习更多的特征。
作用:能将任意大小的特征图转换成固定大小的特征向量
作用:融合两层
大小通道相同的两层叠加,通道数相加
添加一个小目标层,160*160。通道数的选择主要目的是为了和上层通道数一致从而能够concat
# YOLOv5 by Ultralytics, GPL-3.0 license
# Parameters
nc: 10 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [5,6, 8,14, 15,11] #4
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
backbone:
# [from, number, module, args]
#640*640*3
[[-1, 1, Focus, [64, 3]], # 0-P1/2
#320*320*32
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
#160*160*64
[-1, 3, C3, [128]], #160*160
#160*160*64
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
#80*80*128
[-1, 9, C3, [256]], #480*80
#80*80*128
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
#40*40*256
[-1, 9, C3, [512]], #40*40
#40*40*256
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
#20*20*512
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, C3, [1024, False]], # 9 20*20
#20*20*512
]
# YOLOv5 v6.0 head
# concat之后通道翻倍
head:
[[-1, 1, Conv, [512, 1, 1]], #20*20*256
[-1, 1, nn.Upsample, [None, 2, 'nearest']], #40*40*256
[[-1, 6], 1, Concat, [1]], # cat backbone P4 40*40*512
[-1, 1, C3, [512, False]], # 13 40*40*256
[-1, 1, Conv, [256, 1, 1]], # 40*40*128
[-1, 1, nn.Upsample, [None, 2, 'nearest']], #80*80*128
[[-1, 4], 1, Concat, [1]], # cat backbone P3 80*80*256
[-1, 1, C3, [256, False]], # 17 (P3/8-small) 80*80*128
[-1, 1, Conv, [128, 1, 1]], # 80*80*64
[-1, 1, nn.Upsample, [None, 2, 'nearest']], #160*160*64
[[-1, 2], 1, Concat, [1]], # cat backbone P3 160*160*128
[-1, 1, C3, [128, False]], # 21 (P3/8-small) 160*160*64
[-1, 1, Conv, [128, 3, 2]], #80*80*64
[[-1, 18], 1, Concat, [1]], # cat head P4 80*80*128
[-1, 1, C3, [256, False]], # 24 (P4/16-medium) 80*80*128
[-1, 1, Conv, [256, 3, 2]], # 40*40*128
[[-1, 14], 1, Concat, [1]], # cat head P4 40*40*256
[-1, 1, C3, [512, False]], # 27 (P4/16-medium) 40*40*256
[-1, 1, Conv, [512, 3, 2]], # 20*20*256
[[-1, 10], 1, Concat, [1]], # cat head P5 20*20*512
[-1, 1, C3, [1024, False]], # 30 (P5/32-large) 20*20*512
[[21, 24,27,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
Shufflenetv2
旷视轻量化卷积神经网络Shufflenetv2,通过大量实验提出四条轻量化网络设计准则,对输入输出通道、分组卷积组数、网络碎片化程度、逐元素操作对不同硬件上的速度和内存访问量MAC(Memory Access Cost)的影响进行了详细分析:
准则一:输入输出通道数相同时,内存访问量MAC最小
Mobilenetv2就不满足,采用了拟残差结构,输入输出通道数不相等
准则二:分组数过大的分组卷积会增加MAC
Shufflenetv1就不满足,采用了分组卷积(GConv)
准则三:碎片化操作(多通路,把网络搞的很宽)对并行加速不友好
Inception系列的网络
准则四:逐元素操作(Element-wise,例如ReLU、Shortcut-add等)带来的内存和耗时不可忽略
Shufflenetv1就不满足,采用了add操作
针对以上四条准则,作者提出了Shufflenetv2模型,通过Channel Split替代分组卷积,满足四条设计准则,达到了速度和精度的最优权衡。
Shufflenetv2有两个结构:basic unit和unit from spatial down sampling(2×)
basic unit:输入输出通道数不变,大小也不变
unit from spatial down sample :输出通道数扩大一倍,大小缩小一倍(降采样)
Shufflenetv2整体哲学要紧紧向论文中提出的轻量化四大准则靠拢,基本除了准则四之外,都有效的避免了
为了解决GConv(Group Convolution)导致的不同group之间没有信息交流,只在同一个group内进行特征提取的问题,Shufflenetv2设计了Channel Shuffle操作进行通道重排,跨group信息交流
1. common.py文件修改:直接在最下面加入如下代
# ---------------------------- ShuffleBlock start -------------------------------
# 通道重排,跨group信息交流
def channel_shuffle(x, groups):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // groups
# reshape
x = x.view(batchsize, groups,
channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batchsize, -1, height, width)
return x
class conv_bn_relu_maxpool(nn.Module):
def __init__(self, c1, c2): # ch_in, ch_out
super(conv_bn_relu_maxpool, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(c2),
nn.ReLU(inplace=True),
)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
def forward(self, x):
return self.maxpool(self.conv(x))
class Shuffle_Block(nn.Module):
def __init__(self, inp, oup, stride):
super(Shuffle_Block, self).__init__()
if not (1 <= stride <= 3):
raise ValueError('illegal stride value')
self.stride = stride
branch_features = oup // 2
assert (self.stride != 1) or (inp == branch_features << 1)
if self.stride > 1:
self.branch1 = nn.Sequential(
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
nn.BatchNorm2d(inp),
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
)
self.branch2 = nn.Sequential(
nn.Conv2d(inp if (self.stride > 1) else branch_features,
branch_features, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
nn.BatchNorm2d(branch_features),
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(branch_features),
nn.ReLU(inplace=True),
)
@staticmethod
def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
def forward(self, x):
if self.stride == 1:
x1, x2 = x.chunk(2, dim=1) # 按照维度1进行split
out = torch.cat((x1, self.branch2(x2)), dim=1)
else:
out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
out = channel_shuffle(out, 2)
return out
# ---------------------------- ShuffleBlock end --------------------------------
2. yolo.py文件修改:在yolo.py的parse_model
函数中,加入conv_bn_relu_maxpool, Shuffle_Block
两个模块
3. 新建yaml文件:在model文件下新建yolov5-shufflenetv2.yaml
文件,复制以下代码即可
# YOLOv5 by Ultralytics, GPL-3.0 license
# Parameters
nc: 10 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
- [5,6, 8,14, 15,11] #4
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
backbone:
#640*640*3
[[ -1, 1, conv_bn_relu_maxpool, [ 32 ] ], # 0-P2/4
#320*320*32
[ -1, 1, Shuffle_Block, [ 128, 2 ] ], # 1-P3/8
#160*160*64
[ -1, 3, Shuffle_Block, [ 128, 1 ] ], # 2
#160*160*64
[ -1, 1, Shuffle_Block, [ 256, 2 ] ], # 3-P4/16
#80*80*128
[ -1, 7, Shuffle_Block, [ 256, 1 ] ], # 4
#80*80*128
[ -1, 1, Shuffle_Block, [ 512, 2 ] ], # 5-P5/32
#40*40*256
[ -1, 3, Shuffle_Block, [ 512, 1 ] ], # 6
#40*40*256
[ -1, 1, Shuffle_Block, [ 1024, 2 ] ], # 7
#20*20*512
[ -1, 3, Shuffle_Block, [ 1024, 1 ] ], # 8
#20*20*512
]
# YOLOv5 v6.0 head
# concat之后通道翻倍
head:
[[-1, 1, Conv, [512, 1, 1]], #20*20*256
[-1, 1, nn.Upsample, [None, 2, 'nearest']], #40*40*256
[[-1, 6], 1, Concat, [1]], # cat backbone P4 40*40*512
[-1, 1, C3, [512, False]], # 12 40*40*256
[-1, 1, Conv, [256, 1, 1]], # 40*40*128
[-1, 1, nn.Upsample, [None, 2, 'nearest']], #80*80*128
[[-1, 4], 1, Concat, [1]], # cat backbone P3 80*80*256
[-1, 1, C3, [256, False]], # 16 (P3/8-small) 80*80*128
[-1, 1, Conv, [128, 1, 1]], # 80*80*64
[-1, 1, nn.Upsample, [None, 2, 'nearest']], #160*160*64
[[-1, 2], 1, Concat, [1]], # cat backbone P3 160*160*128
[-1, 1, C3, [128, False]], # 20 (P3/8-small) 160*160*64
[-1, 1, Conv, [128, 3, 2]], #80*80*64
[[-1, 17], 1, Concat, [1]], # cat head P4 80*80*128
[-1, 1, C3, [256, False]], # 23 (P4/16-medium) 80*80*128
[-1, 1, Conv, [256, 3, 2]], # 40*40*128
[[-1, 13], 1, Concat, [1]], # cat head P4 40*40*256
[-1, 1, C3, [512, False]], # 26 (P4/16-medium) 40*40*256
[-1, 1, Conv, [512, 3, 2]], # 20*20*256
[[-1, 9], 1, Concat, [1]], # cat head P5 20*20*512
[-1, 1, C3, [1024, False]], # 29 (P5/32-large) 20*20*512
[[20, 23,26,29], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
右侧是轻量化后的,可以看到参数数量明显减少很多
4. 训练运行
python train.py --data data/VisDrone.yaml --cfg models/yolov5s-tiny.yaml --weights weights/yolov5s.pt --batch-size 4 --epochs 50