好莱坞明星识别-第六周

  • 本文为365天深度学习训练营 中的学习记录博客
  • 参考文章:Pytorch实战 | 第P6周:好莱坞明星识别
  • 原作者:K同学啊|接辅导、项目定制

要求:

  1. 保存训练过程中的最佳模型权重
  2. 调用官方的VGG-16网络框架

拔高(可选):

  1. 测试集准确率达到60%(难度有点大,但是这个过程可以学到不少)
  2. 手动搭建VGG-16网络框架(未完成)

我的环境:
● 语言环境:Python3.8
● 编译器:Pycharm
● 深度学习环境:Pytorch

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2. 导入数据

import os,PIL,random,pathlib

data_dir = './6-data/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("./6-data/",transform=train_transforms)
total_data.class_to_idx

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

4. 显示图片信息


#%%
import matplotlib.pyplot as plt
 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(80, 20))
for i, imgs in enumerate(X[:20]):
    # 维度缩减X
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

二、调用官方的VGG-16模型

from torchvision.models import vgg16

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
# 加载预训练模型,并且对模型进行微调
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型

for param in model.parameters():
    param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数

# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
# 注意查看我们下方打印出来的模型
model.classifier._modules['6'] = nn.Linear(4096,len(classeNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)  
model

三、训练模型

1. 编写训练函数

训练循环

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

2. 编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3.设置动态学习率

# def adjust_learning_rate(optimizer, epoch, start_lr):
#     # 每 2 个epoch衰减到原来的 0.98
#     lr = start_lr * (0.92 ** (epoch // 2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr

learn_rate = 1e-4 # 初始学习率
# optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

4.正式训练

好莱坞明星识别-第六周_第1张图片
好莱坞明星识别-第六周_第2张图片

四、实验改进

1.模型分类器引入BN层,并设置dropout比例为0.4

model.classifier = nn.Sequential(
            # 14
            nn.Linear(25088, 1024),
            nn.BatchNorm1d(1024),
            # nn.ReLU(True),
            nn.Dropout(0.4),
            # 15
            nn.Linear(1024, 128),
            nn.BatchNorm1d(128),
            # nn.ReLU(True),
            nn.Dropout(0.4),
            # 16
            nn.Linear(128, len(classeNames)),
            nn.Softmax()
        )

2.设置优化器为Adam,学习率提升到1e-3

learn_rate = 1e-3 # 初始学习率
lambda1 = lambda epoch: 0.92 ** (epoch // 10)
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) 

3.实验结果

评价指标:
好莱坞明星识别-第六周_第3张图片
图片预测
好莱坞明星识别-第六周_第4张图片

模型评估
好莱坞明星识别-第六周_第5张图片

问题

“RuntimeError: CUDA error: device-side assert triggered”
1.尝试使用CPU进行训练,不推荐
2.修改参数pretrained=false,通过,但测试集准确率会降低。

参考

VGG网络实现

你可能感兴趣的:(深度学习,pytorch,python)