论文链接:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
源码地址:https://github.com/microsoft/Swin-Transformer
目前Transformer应用到图像领域主要有两大挑战:
其中滑窗操作包括不重叠的local window,和重叠的cross-window。将注意力计算限制在一个窗口中,一方面能引入CNN卷积操作的局部性,另一方面能节省计算量。
在各大图像任务上,Swin Transformer都具有很好的性能。
我们先看下Swin Transformer的整体架构
整个模型采取层次化的设计,一共包含4个Stage,每个stage都会缩小输入特征图的分辨率,像CNN一样逐层扩大感受野。
它首先通过像ViT一样的分片模块将输入的RGB图像分片成不重叠的像素块。每个像素块被视为一个“token”,其特征被设置为原始像素RGB值的串联。我们使用的像素块是4×4的size,所以其特征维度为4×4×3=48。在这个原始值特征上应用一个线性嵌入层,将其投影到任意维(表示为C)。
在stage1中,几个Swin Transformer blocks算子被应用于这些像素块上。这些 Transformer blocks保持了H4×W4的tokens数量,并且伴随线性的嵌入层。
stage2中,为了产生一个层次化的表示,由于像素块的合并使得tokens的数量减少了。第一次patch merging layer合并了2×2领域内的像素块,并且使用一个线性层在4C的特征上进行合并。这个操作减少了2×2=4倍的tokens,并设置输出的维度为2C。这里的Transformer blocks应用于特征变换后,tokens的数量变为H8×W8。这第一个像素块融合和特征变换被称为stage2。这种操作进行叠加产生了stage3、stage4,如图所示,tokens的数量分别为: H 16 \cfrac H{16} 16H× H 16 \cfrac H{16} 16H、 H 32 \cfrac H{32} 32H× H 32 \cfrac H{32} 32H。这些阶段共同产生一个层次表示,具有与典型卷积网络相同的特征图分辨率,如VGG [51] and ResNet [29]。结果表明,该体系结构可以很方便地取代现有方法中的backbone,用于各种视觉任务。
class SwinTransformer(nn.Module):
def __init__(...):
super().__init__()
...
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(...)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
其中有几个地方处理方法与ViT不同:
接下来我们看下各个组件的构成
在输入进Block前,我们需要将图片切成一个个patch,然后嵌入向量。
具体做法是对原始图片裁成一个个 patch_size * patch_size的窗口大小,然后进行嵌入。
这里可以通过二维卷积层,将stride,kernelsize设置为patch_size大小。设定输出通道来确定嵌入向量的大小。最后将H,W维度展开,并移动到第一维度
import torch
import torch.nn as nn
class PatchEmbed(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size) # -> (img_size, img_size)
patch_size = to_2tuple(patch_size) # -> (patch_size, patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
# 假设采取默认参数
x = self.proj(x) # 出来的是(N, 96, 224/4, 224/4)
x = torch.flatten(x, 2) # 把HW维展开,(N, 96, 56*56)
x = torch.transpose(x, 1, 2) # 把通道维放到最后 (N, 56*56, 96)
if self.norm is not None:
x = self.norm(x)
return x
该模块的作用是在每个Stage开始前做降采样,用于缩小分辨率,调整通道数 进而形成层次化的设计,同时也能节省一定运算量。
在CNN中,则是在每个Stage开始前用stride=2的卷积/池化层来降低分辨率。
每次降采样是两倍,因此在行方向和列方向上,间隔2选取元素。
然后拼接在一起作为一整个张量,最后展开。此时通道维度会变成原先的4倍(因为H,W各缩小2倍),此时再通过一个全连接层再调整通道维度为原来的两倍。
class PatchMerging(nn.Module):
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
下面是一个示意图(输入张量N=1, H=W=8, C=1,不包含最后的全连接层调整)
个人感觉这像是PixelShuffle的反操作
window partition函数是用于对张量划分窗口,指定窗口大小。将原本的张量从 N H W C, 划分成 num_windowsB, window_size, window_size, C,其中 num_windows = HW / window_size,即窗口的个数。而window reverse函数则是对应的逆过程。这两个函数会在后面的Window Attention用到。
def window_partition(x, window_size):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
这是这篇文章的关键。传统的Transformer都是基于全局来计算注意力的,因此计算复杂度十分高。而Swin Transformer则将注意力的计算限制在每个窗口内,进而减少了计算量。
我们先简单看下公式
A t t e n t i o n ( Q , K , V ) = S o f t m a x ( Q K T d + B ) V Attention(Q,K,V) = Softmax(\cfrac {QK^T}{ \sqrt{\smash[b]d}}+B)V Attention(Q,K,V)=Softmax(dQKT+B)V
主要区别是在原始计算Attention的公式中的Q,K时加入了相对位置编码。后续实验有证明相对位置编码的加入提升了模型性能。
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads # nH
head_dim = dim // num_heads # 每个注意力头对应的通道数
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 设置一个形状为(2*(Wh-1) * 2*(Ww-1), nH)的可学习变量,用于后续的位置编码
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
# 相关位置编码...
下面我把涉及到相关位置编码的逻辑给单独拿出来,这部分比较绕
首先QK计算出来的Attention张量形状为(numWindowsB, num_heads, window_sizewindow_size, window_size*window_size)。
而对于Attention张量来说,以不同元素为原点,其他元素的坐标也是不同的,以window_size=2为例,其相对位置编码如下图所示
首先我们利用torch.arange和torch.meshgrid函数生成对应的坐标,这里我们以windowsize=2为例子
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.meshgrid([coords_h, coords_w]) # -> 2*(wh, ww)
"""
(tensor([[0, 0],
[1, 1]]),
tensor([[0, 1],
[0, 1]]))
"""
然后堆叠起来,展开为一个二维向量
coords = torch.stack(coords) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
"""
tensor([[0, 0, 1, 1],
[0, 1, 0, 1]])
"""
利用广播机制,分别在第一维,第二维,插入一个维度,进行广播相减,得到 2, whww, whww的张量
relative_coords_first = coords_flatten[:, :, None] # 2, wh*ww, 1
relative_coords_second = coords_flatten[:, None, :] # 2, 1, wh*ww
relative_coords = relative_coords_first - relative_coords_second # 最终得到 2, wh*ww, wh*ww 形状的张量
因为采取的是相减,所以得到的索引是从负数开始的,我们加上偏移量,让其从0开始。
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
后续我们需要将其展开成一维偏移量。而对于(1,2)和(2,1)这两个坐标。在二维上是不同的,但是通过将x,y坐标相加转换为一维偏移的时候,他的偏移量是相等的。
所以最后我们对其中做了个乘法操作,以进行区分
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
然后再最后一维上进行求和,展开成一个一维坐标,并注册为一个不参与网络学习的变量
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
接着我们看前向代码
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0) # (1, num_heads, windowsize, windowsize)
if mask is not None: # 下文会分析到
...
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
虽然在window内部计算self-attention可能大大降低模型的复杂度,但是不同window无法进行信息交互,从而表现力欠缺。为了更好的增强模型的表现能力,引入Shifted Windows Attention。Shifted Windows是在连续的Swin Transformer blocks之间交替移动的
前面的Window Attention是在每个窗口下计算注意力的,为了更好的和其他window进行信息交互,Swin Transformer还引入了shifted window操作。
标准的Transformer架构适应于图像分类,主要采用了相对位置编码的全局自注意力机制,而全局计算的复杂度是二次的,表现为tokens的数量。这在很多视觉任务中都会带来速度损失,且在高分辨率下表现出很强的不适应性。
非重叠窗口的自注意力
为了高效地计算,我们采用局部窗口。这些窗口是均匀排列,且相互不重叠。假设窗口包含M×M个像素块,则 global MSA 在h×w的图像上的计算复杂度为:
(1) Ω ( M S A ) = 4 h e C 2 + 2 ( h w ) 2 C , Ω(MSA)=4heC^2+2(hw)^2C, Ω(MSA)=4heC2+2(hw)2C,
(2) Ω ( W − M S A ) = 4 h e C 2 + 2 M 2 h w C , Ω(W-MSA)=4heC^2+2M^2hwC, Ω(W−MSA)=4heC2+2M2hwC,
这里MSA的复杂度是hw的二次方,而M^2是远小于hw的,所以它是hw的一次复杂度。
Shifted window partitioning in successive blocks
连续块的移位窗口划分
基于窗口的自注意模块缺乏跨窗口的连接,这限制了它的建模能力。为了在保持非重叠窗口计算效率的同时引入跨窗口连接,我们提出了一种 shifted window 划分方法,该方法在连续的Swin-Transformer块中交替使用两种划分配置。
如图2所示,第一个模型使用了正则窗口划分策略。从左上角开始,将8×8的像素块划分为M×M(M=4)个2×2的像素块。下一个模型的策略是shifted。对上一层划分的窗口进行移动:向左上角移动(⌊ M 2 \cfrac M2 2M⌋,⌊ M 2 \cfrac M2 2M⌋)个2×2的像素块。利用移窗划分方法,连续的Swin-Transformer块的计算公式为:
上面的公式对应了图3(b)所示的结构。
移动窗口划分策略,实现了相邻的非重叠窗口的连接,经过实验我们发现它对于图像分类、目标检测、语义分割是高效的!参考Table 4.
注意:W-MSA中的像素块特征数是一致的,但是SW-MSA它可不是一致的,这个怎么计算呢?
一般的Shifted window partition操作如下图:
左边是没有重叠的Window Attention,而右边则是将窗口进行移位的Shift Window Attention。可以看到移位后的窗口包含了原本相邻窗口的元素。但这也引入了一个新问题,即window的个数翻倍了,由原本四个窗口变成了9个窗口。
在实际代码里,我们是通过对特征图移位,并给Attention设置mask来间接实现的。能在保持原有的window个数下,最后的计算结果等价。
window partition源码:
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
阅读源码后发现,源码中也没有实现windows由4个变成9个的操作,而且当window_size为奇数时会报错,也不必过分纠结于此,因为实际的操作是通过下面更有效地方法计算的。
Efficient batch computation
shifted策略的高效batch计算
通过给Attention加mask实现,限制自注意力计算量,在子窗口中计算。
shifted操作使得像素块patches的个数⌈hM⌉×⌈wM⌉从变为(⌈ M h \tfrac Mh hM⌉+1)×(⌈ w M \tfrac wM Mw⌉+1)。如图2所示。且这里部分窗口的大小不是M×M。最简单的方法是直接将所有窗口padding到同样的大小。如果正则策略划分的较小,如上面的2×2,那么将增加计算量。然而我们提出了一种批量的高效计算方法:循环向左上角移动(cyclic-shifting),如下图所示:
3.2.4 相对位置偏置
在自注意力模块的计算中,我们引入相对位置偏置到每一个头的计算:
A t t e n t i o n ( Q , K , V ) = S o f t m a x ( Q K T d + B ) V Attention(Q,K,V) = Softmax(\cfrac {QK^T}{ \sqrt{\smash[b]d}}+B)V Attention(Q,K,V)=Softmax(dQKT+B)V
其中 Q , K , V ∈ R M 2 × d Q,K,V∈R^{M^2×d} Q,K,V∈RM2×d分别标识查询矩阵、键矩阵、值矩阵;d是查询矩阵或键矩阵的dimension, M 2 M^2 M2是窗口内的像素块个数。
Note: 这里的像素块是基本像素块单元,即上文的2×2像素块, M 2 M^2 M2即窗口内的2×2像素块个数。
因为相对位置的范围是[−M+1,M−1],我们参数化了一个小尺寸的bias矩阵B`∈ R ( 2 M − 1 ) × ( 2 M − 1 ) R^{(2M−1)×(2M−1)} R(2M−1)×(2M−1),并且我们的B是从B^中取的一个token。
如表4所示,我们观察到与没有此偏差项或使用绝对位置嵌入的对应项相比有显著改进。如[19]中所述,进一步向输入中添加绝对位置嵌入会略微降低性能,因此在我们的实现中不采用这种方法。
预训练中学习到的相对位置bias矩阵也可用于初始化模型B^,以便通过双三次插值以不同的窗口大小进行微调[19,60]。
代码里对特征图移位是通过torch.roll来实现的,下面是示意图
如果需要reverse cyclic shift的话只需把参数shifts设置为对应的正数值。
我认为这是Swin Transformer的精华,通过设置合理的mask,让Shifted Window Attention在与Window Attention相同的窗口个数下,达到等价的计算结果。
首先我们对Shift Window后的每个窗口都给上index,并且做一个roll操作(window_size=2, shift_size=1)
我们希望在计算Attention的时候,让具有相同index QK进行计算,而忽略不同index QK计算结果。
最后正确的结果如下图所示
而要想在原始四个窗口下得到正确的结果,我们就必须给Attention的结果加入一个mask(如上图最右边所示)
cyclic shitf详解见文章:【Pytorch小知识】torch.roll()函数的用法及在Swin Transformer中的应用(详细易懂)
相关代码如下:
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
以上图的设置,我们用这段代码会得到这样的一个mask
tensor([[[[[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]]],
[[[ 0., -100., 0., -100.],
[-100., 0., -100., 0.],
[ 0., -100., 0., -100.],
[-100., 0., -100., 0.]]],
[[[ 0., 0., -100., -100.],
[ 0., 0., -100., -100.],
[-100., -100., 0., 0.],
[-100., -100., 0., 0.]]],
[[[ 0., -100., -100., -100.],
[-100., 0., -100., -100.],
[-100., -100., 0., -100.],
[-100., -100., -100., 0.]]]]])
在之前的window attention模块的前向代码里,包含这么一段
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
将mask加到attention的计算结果,并进行softmax。mask的值设置为-100,softmax后就会忽略掉对应的值
两个连续的Block架构如上图所示,需要注意的是一个Stage包含的Block个数必须是偶数,因为需要交替包含一个含有Window Attention的Layer和含有Shifted Window Attention的Layer。
我们看下Block的前向代码
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
整体流程如下
在ImageNet22K数据集上,准确率能达到惊人的86.4%。另外在检测,分割等任务上表现也很优异,感兴趣的可以翻看论文最后的实验部分。
在同尺寸通计算量的前提下,swin确实效果远好于resnet。但是有几个问题:
这篇文章创新点很棒,引入window这一个概念,将CNN的局部性引入,还能控制模型整体计算量。在Shift Window Attention部分,用一个mask和移位操作,很巧妙的实现计算等价。作者的代码也写得十分赏心悦目,推荐阅读!
参考资料