- 计算机视觉技术探索:美颜SDK如何利用深度学习优化美颜、滤镜功能?
美狐美颜sdk
美颜SDK美颜API直播美颜SDK计算机视觉深度学习直播美颜SDK美颜sdk第三方美颜sdk美颜api
时下,计算机视觉+深度学习正在重塑美颜技术,通过智能人脸检测、AI滤镜、深度美肤、实时优化等方式,让美颜效果更加自然、精准、个性化。那么,美颜SDK如何结合深度学习来优化美颜和滤镜功能?本文将深入解析AI在美颜技术中的应用,并探讨其未来发展趋势。一、深度学习如何赋能美颜SDK?1.AI人脸检测与关键点识别:精准捕捉五官在美颜过程中,首先需要精准检测人脸位置和五官特征点,确保美颜效果不会失真。深度学
- 深度学习模型性能全景评估与优化指南
niuTaylor
深度学习人工智能
深度学习模型性能全景评估与优化指南一、算力性能指标体系1.核心算力指标对比指标计算方式适用场景硬件限制TOPS(TeraOperationsPerSecond)每秒万亿次整数运算量化模型推理NVIDIAJetsonNano仅支持FP16/FP32TFLOPS(TeraFLoating-pointOPerationsperSecond)TFLOPS=Cores×FLOPs/Cycle×Frequen
- 利用Python和深度学习方法实现手写数字识别的高精度解决方案——从数据预处理到模型优化的全流程解析
快撑死的鱼
Python算法精解python深度学习开发语言
利用Python和深度学习方法实现手写数字识别的高精度解决方案——从数据预处理到模型优化的全流程解析在人工智能的众多应用领域中,手写数字识别是一项经典且具有重要实际应用价值的任务。随着深度学习技术的飞速发展,通过构建和训练神经网络模型,手写数字识别的精度已经可以达到99%以上。本文将以Python为主要编程语言,结合深度学习的核心技术,详细解析手写数字识别的实现过程,并探讨如何进一步优化模型以提高
- 强化学习中的深度卷积神经网络设计与应用实例
数字扫地僧
计算机视觉cnn人工智能神经网络
I.引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,通过与环境的交互来学习最优策略。深度学习,特别是深度卷积神经网络(DeepConvolutionalNeuralNetworks,DCNNs)的引入,为强化学习在处理高维度数据方面提供了强大工具。本文将探讨强化学习中深度卷积神经网络的设计原则及其在不同应用场景中的实例。II.深度卷积神经网络在强化学习中的
- 腾讯云大模型知识引擎与DeepSeek:打造懒人专属的谷歌浏览器翻译插件
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3腾讯云云计算
摘要:随着人工智能技术的飞速发展,越来越多的前沿技术和工具已走入日常生活。翻译工具作为跨语言沟通的桥梁,一直处于技术创新的风口浪尖。本文探讨了腾讯云大模型知识引擎与DeepSeek结合谷歌浏览器插件的可能性,旨在为用户提供一种便捷、高效的翻译体验。通过应用深度学习、自然语言处理和知识图谱技术,该插件不仅能实时翻译网页内容,还能根据上下文进行智能推荐,实现精准的语境转换。本文将详细阐述其设计思路、技
- 【猫狗分类】Pytorch VGG16 实现猫狗分类1-数据清洗+制作标签文件
努力的小巴掌
pytorch分类项目pytorch分类人工智能
Pytorch猫狗分类用Pytorch框架,实现分类问题,好像是学习了一些基础知识后的一个小项目阶段,通过这个分类问题,可以知道整个pytorch的工作流程是什么,会了一个分类,那就可以解决其他的分类问题,当然了,其实最重要的还是,了解她的核心是怎么工作的。那首先,我们的第一个项目,就做猫狗的分类。声明:整个数据和代码来自于b站,链接:使用pytorch框架手把手教你利用VGG16网络编写猫狗分类
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(二)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(二)5.跨模态检索系统应用场景5.1图文匹配系统的实际应用应用领域具体场景优势电子商务商品图像搜索、视觉购物用户可以上传图片查找相似商品或使用文本描述查找商品智能媒体内容推荐、图片库搜索通过内容的语义理解提供更精准的推荐和搜索社交网络基于内容的帖子推荐理解用户兴趣,提供更相关的内容推荐教育技术多模态教学资源检索教师和学生可以更
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(一)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(一)引言:跨越感知的边界欢迎来到我们的PyTorch学习旅程第28天!今天我们将步入AI世界中最激动人心的领域之一:多模态学习。想象一下,如果你的模型既能"看"又能"读",并且能够理解图像与文字之间的联系,这将为我们打开怎样的可能性?今天我们将专注于构建图文匹配系统,学习如何使用CLIP(ContrastiveLanguage
- 10.2 如何解决从复杂 PDF 文件中提取数据的问题?
墨染辉
大语言模型pdf
10.2如何解决从复杂PDF文件中提取数据的问题?解决方案:嵌入式表格检索解释:嵌入式表格检索是一种专门针对从复杂PDF文件中的表格提取数据的技术。它结合了表格识别、解析和语义理解,使得从复杂结构的表格中检索信息成为可能。具体步骤:表格检测和识别:目标:在PDF页面中准确地定位和识别表格区域。方法:使用计算机视觉和深度学习技术,如卷积神经网络(CNN)或其他先进的图像处理算法。效果:能够检测出页面
- TensorFlow深度学习实战项目:从入门到精通
点我头像干啥
Ai深度学习tensorflow人工智能
引言深度学习作为人工智能领域的一个重要分支,近年来取得了显著的进展。TensorFlow作为Google开源的深度学习框架,因其强大的功能和灵活的架构,成为了众多开发者和研究者的首选工具。本文将带领大家通过一个实战项目,深入理解TensorFlow的使用方法,并掌握深度学习的基本流程。1.TensorFlow简介1.1TensorFlow是什么?TensorFlow是一个开源的机器学习框架,由Go
- 国外7个最佳大语言模型 (LLM) API推荐
幂简集成
API新理念语言模型人工智能自然语言处理
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- 【深度学习】DeepSeek模型介绍与部署
Nerous_
深度学习深度学习人工智能
原文链接:DeepSeek-V31.介绍DeepSeek-V3,一个强大的混合专家(MoE)语言模型,拥有671B总参数,其中每个token激活37B参数。为了实现高效推理和成本效益的训练,DeepSeek-V3采用了多头潜在注意力(MLA)和DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分验证。此外,DeepSeek-V3首次提出了无辅助损失的负载平衡策略,并设置了多to
- 【深度学习】 PyTorch一文详解
Nerous_
深度学习深度学习pytorch人工智能机器学习python
“PyTorchisadeeplearningframeworkthatprioritizessimplicityandflexibility,makingitthego-tochoiceforbothresearchersanddevelopers.”—Anonymous1.PyTorch简介1.1PyTorch的背景与发展PyTorch是由Facebook人工智能研究院(FAIR)开发的一个开
- 【DNN量化工具】QKeras 工具简介
kanhao100
笔记dnn人工智能神经网络
QKeras工具简介QKeras是一个用于量化深度学习模型的Keras扩展库,旨在使深度学习模型的量化(即将模型的浮点权重转换为低精度格式)变得简单而高效。QKeras主要目标是优化模型的存储和推理速度,特别适用于需要在资源受限的设备(如移动设备和嵌入式系统)上运行深度学习模型的场景。QKeras的主要特点量化支持:QKeras提供了对不同类型量化的支持,包括权重量化和激活量化。用户可以根据需求选
- Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术
Mark White
dnn人工智能神经网络
Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术在深度学习的精密机械中,有些细微的调整机制往往被视为理所当然,却实际上蕴含着深刻的数学洞察和巧妙的工程智慧。今天,我们将探讨两个看似独立却本质相通的机制:生成模型中的温度参数与Transformer注意力机制中的缩放因子。这两个设计都围绕着同一个核心概念——softmax分布的平滑控制。Softmax函数:概率分布的催化剂在深入讨论之前,
- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- Umi-OCR:解锁高效文字识别的新时代
水熠芝Dark-Haired
Umi-OCR:解锁高效文字识别的新时代Umi-OCR一款强大而高效的文字识别工具项目地址:https://gitcode.com/Resource-Bundle-Collection/6adda项目介绍在数字化浪潮席卷全球的今天,文字识别技术已成为提升工作效率和生活质量的关键工具。Umi-OCR,作为一款基于深度学习技术的开源文字识别工具,凭借其强大的功能和高效的性能,迅速成为众多用户的首选。无
- Umi-OCR:一款强大而高效的文字识别工具
裘心国Trent
Umi-OCR:一款强大而高效的文字识别工具Umi-OCR一款强大而高效的文字识别工具项目地址:https://gitcode.com/Resource-Bundle-Collection/6adda介绍Umi-OCR是一款基于深度学习技术的开源文字识别工具,特别适合日常办公、学术研究及数据分析等场景。它能有效解决将图像中的文字快速转化为可编辑文本的需求,极大提升工作效率。此工具依托于先进的计算机
- 自动语音识别(ASR):技术、应用与未来
ajie1117
语音识别人工智能
自动语音识别(ASR):技术、应用与未来1.ASR简介自动语音识别(ASR,AutomaticSpeechRecognition)是一种将语音转换为文本的技术。它利用人工智能(AI)、深度学习和自然语言处理(NLP)技术来识别和理解人类的语言,使计算机能够与人类进行更自然的交互。2.ASR的工作原理ASR的核心流程通常包括以下几个步骤:语音信号采集:通过麦克风或其他设备获取音频数据。预处理:去除噪
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 关于误差平面小记
文弱_书生
乱七八糟平面算法神经网络机器学习
四维曲面的二维切片:误差平面详解在深度学习优化过程中,我们通常研究损失函数(LossFunction)的变化,试图找到权重的最优配置。由于神经网络的参数空间通常是高维的,我们需要使用低维可视化的方法来理解优化过程和误差平面(ErrorSurface)。在这里,我们讨论一个四维曲面的二维切片,其中:三个维度是网络的权重(w1,w2,w3w_1,w_2,w_3w1,w2,w3)。第四个维度是误差(损失
- 关于神经网络中的激活函数
文弱_书生
乱七八糟神经网络人工智能深度学习
激活函数(ActivationFunction)详解理解首先煮波解释一下这四个字,“函数”相信大家都不陌生,能点进来看这篇文章说明你一定经历至少长达十年的数学的摧残,关于这个概念煮波就不巴巴了,煮波主要说一下“激活”,大家可能或多或少的看过类似于古装,玄幻,修仙等类型的小说或者电视剧。剧中的主角往往是天赋异禀或则什么神啊仙啊的转世,但是这一世他却被当成了普通人,指导某一时刻才会迸发出全部的能量(主
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- 关于神经网络中的正则化
文弱_书生
乱七八糟神经网络人工智能深度学习
神经网络训练中的正则化正则化(Regularization)是神经网络训练中的一个关键技术,主要用于防止模型过拟合(overfitting),提高泛化能力。1.为什么需要正则化?在神经网络训练过程中,模型的目标是找到能在训练数据上表现良好的参数,同时也能泛化到未见过的数据。如果一个模型过于复杂(如参数过多、层数过深),它可能会记住训练数据中的噪声,而不是学习数据的本质模式。这种情况称为过拟合(ov
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- 基于Matlab_simulink仿真相关 控制算法、优化算法相关帮助代做,原理讲解
985计算机硕士
仿真模型matlab算法开发语言
Matlab/simulink仿真相关控制算法、优化算法相关帮助代做,原理讲解:1.优化算法相关:蚁群优化算法,遗传优化算法等2.控制器相关:ADRC控制,鲁棒控制,神经网络控制,MPC等3.神经网络相关:BP神经网络,RBF神经网络,LSTM神经网络等文章目录1.优化算法相关蚁群优化算法(ACO)2.控制器相关ADRC控制3.神经网络相关BP神经网络1.构建光伏系统模型1.1光伏电池模型1.2控
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- Hugging Face预训练GPT微调ChatGPT(微调入门!新手友好!)
y江江江江
机器学习大模型gptchatgpt
HuggingFace预训练GPT微调ChatGPT(微调入门!新手友好!)在实战中,⼤多数情况下都不需要从0开始训练模型,⽽是使⽤“⼤⼚”或者其他研究者开源的已经训练好的⼤模型。在各种⼤模型开源库中,最具代表性的就是HuggingFace。HuggingFace是⼀家专注于NLP领域的AI公司,开发了⼀个名为Transformers的开源库,该开源库拥有许多预训练后的深度学习模型,如BERT、G
- Open-Sora - 为所有人实现高效的视频制作大众化
小众AI
AI开源音视频人工智能AI编程
GitHub:https://github.com/hpcaitech/Open-Sora更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AI这是一款开源的SOTA(State-of-the-Art)视频生成模型,仅用20万美元(224张GPU)就能训练出商业级11B参数的视频生成大模型。它采用Python语言和PyTorch深度学习框架开发,具有生成速度快、资源消
- Adam-mini:深度学习内存效率新突破
XianxinMao
人工智能深度学习人工智能
标题:Adam-mini:深度学习内存效率新突破文章信息摘要:Adam-mini优化器在深度学习领域展现出突破性潜力,尤其在内存效率和计算性能上表现卓越。相比AdamW,Adam-mini将内存效率提升了一倍,并通过减少学习率数量显著降低了内存消耗,同时保持了与AdamW相当甚至更好的性能。在训练十亿参数级别的大语言模型(LLM)时,Adam-mini实现了49.6%的吞吐量提升,并减少了33%的
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts