- PyTorch数据加载与预处理
飘若随风
PyTorchpytorch人工智能python
数据加载与预处理详解1.数据集类(Dataset和DataLoader)1.1Dataset基类PyTorch中的Dataset是一个抽象类,所有自定义的数据集都应该继承这个类,并实现以下两个方法:__len__():返回数据集的大小__getitem__():根据索引返回一个样本概念解析:Dataset类提供了统一的数据访问接口通过继承Dataset,我们可以轻松地将数据集成到PyTorch的生
- pad_sequence
朋也透william
人工智能深度学习
pad_sequence是PyTorch提供的工具,用于将一组张量序列(通常是变长的序列)进行填充。pad_sequence默认的填充方式是将所有序列填充到同一长度,即最长的序列的长度,这样可以确保所有序列都具有相同的维度。在处理变长序列时,pad_sequence会自动找到需要填充的最大序列长度,然后使用默认的填充值(通常是0)。texts=pad_sequence([torch.LongTen
- pytorch——cpu版本安装,anaconda及清华源镜像相关
龙鹰图腾223
cpu版本的安装1)准备工作:清华源下载所需版本的离线安装包https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/2)anacondaprompt安装d:进入d盘,cd/XX/XX/XX进入目标目录(安装包放的位置)然后condainstallXXXX.tar.bz2(注意:.bz2的后缀如果不加上会影响安装)方法2:直接用pip用
- PyTorch & TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)
阿牛的药铺
算法移植部署pytorchtensorflowfpga开发
PyTorch&TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)引言:为什么算法移植工程师必须掌握框架基础?针对光学类产品算法FPGA移植岗位需求(如可见光/红外图像处理),深度学习框架是算法落地的"桥梁"——既要用PyTorch/TensorFlow验证算法可行性,又要将训练好的模型(如CNN、目标检测)转换为FPGA可部署的格式(ONNX、TFLite)。本文采用"
- vllm本地部署bge-reranker-v2-m3模型API服务实战教程
雷 电法王
大模型部署linuxpythonvscodelanguagemodel
文章目录一、说明二、配置环境2.1安装虚拟环境2.2安装vllm2.3对应版本的pytorch安装2.4安装flash_attn2.5下载模型三、运行代码3.1启动服务3.2调用代码验证一、说明本文主要介绍vllm本地部署BAAI/bge-reranker-v2-m3模型API服务实战教程本文是在Ubuntu24.04+CUDA12.8+Python3.12环境下复现成功的二、配置环境2.1安装虚
- pycharm无法识别conda环境(已解决)
Reborker
pycharmcondaide
文章目录前言研究过程解决办法前言好久不用pycharm了,打开后提示更新,更新到了2023.1版本。安装conda后在新建了一个虚拟环境pytorch,但是无论是基础环境还是虚拟环境,pycharm都识别不出conda里的python.exe(如图)。如果不想看啰嗦直接看后面的解决办法,比较闲的话可以看看我的研究过程。研究过程看了很多博客,尝试了以下解决办法:加载conda.bat文件,虽然出现了
- jetson agx orin 刷机、cuda、pytorch配置指南【亲测有效】
jetsonagxorin刷机指南注意事项刷机具体指南cuda环境配置指南Anconda、Pytorch配置注意事项1.使用设备自带usbtoc的传输线时,注意c口插到orin左侧的口,右侧的口不支持数据传输;2.刷机时需准备ubuntu系统,可以是虚拟机,注意安装SDKManager刷机时,JetPack版本要选对,JetPack6.0的对应ubuntu22,cuda12版本,对应pytorch
- Yolov5-obb(旋转目标poly_nms_cuda.cu编译bug记录及解决方案)
关于在执行pythonsetup.pydevelop#or"pipinstall-v-e."时poly_nms_cuda.cu报错问题。前面步骤严格按照install.md环境1.pytorch版本较低时(我的是1.10):poly_nms_cuda.cu文件添加”#defineeps1e-8“,删除“constdoubleeps=1E-8;”这句2.pytorch版本较高时(我用的是1.27)h
- 【深度学习实战】当前三个最佳图像分类模型的代码详解
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型机器学习TransformerEfficientNetConvNeXt
下面给出三个在当前图像分类任务中精度表现突出的模型示例,分别基于SwinTransformer、EfficientNet与ConvNeXt。每个模型均包含:训练代码(使用PyTorch)从预训练权重开始微调(也可注释掉预训练选项,从头训练)数据集目录结构:└──dataset_root├──buy#第一类图像└──nobuy#第二类图像随机拆分:80%训练,20%验证每个Epoch输出一次loss
- Text2Reward学习笔记
1.提示词请问,“glew”是一个RL工程师常用的工具库吗?请问,thiscodebase主要是做什么用的呀?1.1解释代码是否可以请您根据thiscodebase的主要功能,参考PyTorch的文档格式和文档风格,使用Markdown格式为选中的代码行编写一段相应的文档说明呢?2.项目环境配置2.1新建环境[official]2.1.1Featurizecondacreate-p~/work/d
- Embabel:下一代企业级JVM AI智能体框架的革命引言:AI时代的Java生态新机遇
DZSpace
软件开发jvm人工智能java
在生成式AI(如ChatGPT、Claude、Gemini)席卷全球的背景下,Python凭借其丰富的AI工具链(如PyTorch、LangChain)成为主流开发语言。然而,在企业级软件开发领域,Java和JVM生态(如Kotlin、Scala)长期以来占据主导地位,尤其是在金融、电信、电商等对稳定性、可扩展性、事务管理要求极高的场景。RodJohnson(Spring框架创始人)敏锐地发现了这
- 【第三章:神经网络原理详解与Pytorch入门】02.深度学习框架PyTorch入门-(4)Pytorch实战
IT古董
人工智能课程深度学习神经网络pytorch
第三章:神经网络原理详解与Pytorch入门第二部分:深度学习框架PyTorch入门第四节:Pytorch模型构建内容:如何搭建复杂网络以及如何修改模型与保存一、构建复杂神经网络结构在PyTorch中,构建复杂模型通常通过继承nn.Module类,分模块组织层与前向传播逻辑。示例:自定义一个卷积神经网络(CNN)importtorch.nnasnnimporttorch.nn.functional
- jetson orin nano安装GPU版本的pytorch过程
小鲈鱼-
pytorch人工智能python
一、安装jetpack组件和安装CUDA/cuDNN可以参考下面这个博客「解析」JetsonOrinNX安装CUDA/cuDNN_jetsoncuda-CSDN博客二、安装Pytorch和torchaudio可以直接看官方给的步骤https://pytorch.org/audio/main/build.jetson.html
- lstm 输入数据维度_[mcj]pytorch中LSTM的输入输出解释||LSTM输入输出详解
萬重
lstm输入数据维度
最近想了解一些关于LSTM的相关知识,在进行代码测试的时候,有个地方一直比较疑惑,关于LSTM的输入和输出问题。一直不清楚在pytorch里面该如何定义LSTM的输入和输出。首先看个pytorch官方的例子:#首先导入LSTM需要的相关模块importtorchimporttorch.nnasnn#神经网络模块#数据向量维数10,隐藏元维度20,2个LSTM层串联(如果是1,可以省略,默认为1)r
- pytorch 自动微分
this_show_time
pytorch人工智能python机器学习
自动微分1.基础概念1.1.**张量**1.2.**计算图**:1.3.**反向传播**1.4.**梯度**2.计算梯度2.1标量梯度计算2.2向量梯度计算2.3多标量梯度计算2.4多向量梯度计算3.梯度上下文控制3.1控制梯度计算(withtorch.no_grad())3.2累计梯度3.3梯度清零(torch.zero_())自动微分模块torch.autograd负责自动计算张量操作的梯度,
- PyTorch 在 Python 自然语言处理中的运用
Python编程之道
Python编程之道pythonpytorch自然语言处理ai
PyTorch在Python自然语言处理中的运用关键词:PyTorch,Python,自然语言处理,深度学习,文本分类,情感分析摘要:本文全面探讨了PyTorch在Python自然语言处理(NLP)领域的运用。首先介绍了相关背景知识,包括目的范围、预期读者等内容。接着详细阐述了核心概念,如词嵌入、循环神经网络等,并给出了相应的原理示意图和流程图。深入讲解了核心算法原理,结合Python代码进行详细
- 【AI大模型】PyTorch Lightning 简化工具
我爱一条柴ya
学习AI记录人工智能pytorchpythonaiAI编程
PyTorchLightning是一个轻量级的PyTorch封装库,它通过抽象训练循环的工程细节,让研究人员可以专注于模型设计和实验。以下是PyTorchLightning的核心概念和实战指南。核心优势基础使用:三步搭建训练流程1.定义LightningModuleimporttorchimporttorch.nnasnnimportpytorch_lightningasplfromtorchme
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- huggingface 笔记: Trainer
UQI-LIUWJ
笔记人工智能
Trainer是一个为Transformers中PyTorch模型设计的完整训练与评估循环只需将模型、预处理器、数据集和训练参数传入Trainer,其余交给它处理,即可快速开始训练自动处理以下训练流程:根据batch计算loss使用backward()计算梯度根据梯度更新权重重复上述流程直到达到指定的epoch数1配置TrainingArguments使用TrainingArguments定义训练
- 【深度学习-Day 35】实战图像数据增强:用PyTorch和TensorFlow扩充你的数据集
吴师兄大模型
深度学习入门到精通深度学习pytorchtensorflow人工智能python大模型LLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- PyTorch+CNN进行猫狗识别项目
任务介绍数据结构为:big_data├──train│└──cat│└──XXX.jpg(每个文件夹含若干张图像)│└──dog│└──XXX.jpg(每个文件夹含若干张图像)├──val│└──cat│└──XXX.jpg(每个文件夹含若干张图像)│└──dog└─────└──XXX.jpg(每个文件夹含若干张图像)需要对train数据集进行训练,达到给定val数据集中的一张猫/狗的图片,识别
- 人体坐姿检测系统开发实战(YOLOv8+PyTorch+可视化)
Loving_enjoy
计算机学科论文创新点人工智能深度学习迁移学习经验分享
本文将手把手教你构建智能坐姿检测系统,结合目标检测与姿态估计技术,实现不良坐姿的实时识别与预警###一、项目背景与价值现代人每天平均坐姿时间超过8小时,不良坐姿会导致:-脊椎压力增加300%-颈椎病发病率提升45%-腰椎间盘突出风险增加60%本系统通过计算机视觉技术实时监测坐姿状态,对驼背、侧倾、前倾等不良姿势进行智能识别和预警。相较于传统传感器方案,我们的视觉方案具有非接触、低成本、易部署的优势
- macOS运行python程序遇libiomp5.dylib库冲突错误解决方案
screenCui
macospython开发语言
用途说明在macOS系统运行某些涉及OpenMP或多线程的Python程序(如PyTorch、NumPy等科学计算库)时,可能会出现libiomp5.dylib库冲突的错误。设置os.environ['KMP_DUPLICATE_LIB_OK']='True'允许系统加载重复的动态链接库,临时解决冲突问题。典型错误场景错误信息通常包含以下内容:OMP:Error#15:Initializingli
- 【零基础学AI】第33讲:强化学习基础 - 游戏AI智能体
1989
0基础学AI人工智能游戏transformer分类深度学习神经网络
本节课你将学到理解强化学习的基本概念和框架掌握Q-learning算法原理使用Python实现贪吃蛇游戏AI训练能够自主玩游戏的智能体开始之前环境要求Python3.8+PyTorch2.0+Gymnasium(原OpenAIGym)NumPyMatplotlib推荐使用JupyterNotebook进行实验前置知识Python基础编程(第1-8讲)基本数学概念(函数、导数)神经网络基础(第23讲
- 基于Abp Vnext、FastMCP构建一个企业级的模型即服务(MaaS)平台方案
NetX行者
AbpvnextMaasAbpvnextFastMCP企业级平台解决方案开源python
企业级MaaS平台技术可行性分析报告一、总体技术架构HTTP/WebSocketgRPC/RESTgRPC/RESTgRPCVue3前端ABPvNextAPI网关.NET9业务微服务ABPvNextMCPClientFastMCP模型仓库PyTorch/TensorFlowHuggingFaceHeyGem/ChatGLM自定义模型统一鉴权中心二、核心框架与中间件组件技术选型官方链接作用前端框架V
- TensorRT-LLM:大模型推理加速引擎的架构与实践
前言:技术背景与发展历程:随着GPT-4、LLaMA等千亿级参数模型的出现,传统推理框架面临三大瓶颈:显存占用高(单卡可达80GB)、计算延迟大(生成式推理需迭代处理)、硬件利用率低(Transformer结构存在计算冗余)。根据MLPerf基准测试,原始PyTorch推理的token生成速度仅为12.3tokens/s(A100显卡)。一、TensorRT-LLM介绍:TensorRT-LLM是
- 服务器无对应cuda版本安装pytorch-gpu[自用]
片月斜生梦泽南
pytorch
服务器无对应cuda版本安装pytorch-gpu服务器无对应cuda版本安装pytorch-gpu网址下载非root用户安装tmux查看服务器ubuntu版本conda安装tensorflow-gpu安装1.x版本服务器无对应cuda版本安装pytorch-gpu网址GPU版本的pytorch、pytorchvision的下载链接https://download.pytorch.org/whl/
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- Python打卡:Day40
#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Dataset#DataLoader是PyTorch中用于加载数据的工具fromtorchvisionimportdatasets,transforms#torchvision是一个用于计算机视觉的库,
- Ubuntu下安装多版本CUDA及灵活切换全攻略
芯作者
D2:ubuntulinuxubuntu
——释放深度学习潜能,告别版本依赖的烦恼!**为什么需要多版本CUDA?在深度学习、科学计算等领域,不同框架(TensorFlow、PyTorch等)对CUDA版本的要求各异。同时升级框架或维护旧项目时,版本冲突频发。多版本CUDA共存+一键切换是高效开发的刚需!本文将手把手教你实现这一能力,并分享独创的“动态软链接+环境隔离”技巧,让版本管理行云流水!环境准备硬件要求NVIDIA显卡(支持CUD
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出