opencv中通过VideoCaptrue类对视频进行读取操作以及调用摄像头,下面是该类的API:
import cv2
video = cv2.VideoCapture(0) # 打开本地摄像头,如果是视频流,可将0替换为url
在C++中,CvCapture 是一个结构体,用来保存图像捕获所需要的信息。 opencv通过调用底层ffmpeg提供两种方式从外部捕获图像,打开摄像头或者解析视频流,直接再后面加0或者路径就可以了。而在python中也一样,VideoCapture()是用于从视频文件、图片序列、摄像头捕获视频的类,当我们创建好了上面的video对象后,就可以查看使用帮助和具体能调用的方法,使用help和dir:
$ help(video)
class VideoCapture(builtins.object)
......
| grab(...)
| grab() -> retval
| . @brief Grabs the next frame from video file or capturing device.
| .
| . @return `true` (non-zero) in the case of success.
| .
| . The method/function grabs the next frame from video file or camera and returns true (non-zero) in
| . the case of success.
| .
| . The primary use of the function is in multi-camera environments, especially when the cameras do not
| . have hardware synchronization. That is, you call VideoCapture::grab() for each camera and after that
| . call the slower method VideoCapture::retrieve() to decode and get frame from each camera. This way
| . the overhead on demosaicing or motion jpeg decompression etc. is eliminated and the retrieved frames
| . from different cameras will be closer in time.
| .
| . Also, when a connected camera is multi-head (for example, a stereo camera or a Kinect device), the
| . correct way of retrieving data from it is to call VideoCapture::grab() first and then call
| . VideoCapture::retrieve() one or more times with different values of the channel parameter.
| .
| . @ref tutorial_kinect_openni
|
| isOpened(...)
| isOpened() -> retval
| . @brief Returns true if video capturing has been initialized already.
| .
| . If the previous call to VideoCapture constructor or VideoCapture::open() succeeded, the method returns
| . true.
|
| open(...)
| open(filename[, apiPreference]) -> retval
| . @brief Opens a video file or a capturing device or an IP video stream for video capturing.
| .
| . @overload
| .
| . Parameters are same as the constructor VideoCapture(const String& filename, int apiPreference = CAP_ANY)
| . @return `true` if the file has been successfully opened
| .
| . The method first calls VideoCapture::release to close the already opened file or camera.
|
|
|
| open(index[, apiPreference]) -> retval
| . @brief Opens a camera for video capturing
| .
| . @overload
| .
| . Parameters are same as the constructor VideoCapture(int index, int apiPreference = CAP_ANY)
| . @return `true` if the camera has been successfully opened.
| .
| . The method first calls VideoCapture::release to close the already opened file or camera.
|
| read(...)
| read([, image]) -> retval, image
| . @brief Grabs, decodes and returns the next video frame.
| .
| . @param [out] image the video frame is returned here. If no frames has been grabbed the image will be empty.
| . @return `false` if no frames has been grabbed
| .
| . The method/function combines VideoCapture::grab() and VideoCapture::retrieve() in one call. This is the
| . most convenient method for reading video files or capturing data from decode and returns the just
| . grabbed frame. If no frames has been grabbed (camera has been disconnected, or there are no more
| . frames in video file), the method returns false and the function returns empty image (with %cv::Mat, test it with Mat::empty()).
| .
| . @note In @ref videoio_c "C API", functions cvRetrieveFrame() and cv.RetrieveFrame() return image stored inside the video
| . capturing structure. It is not allowed to modify or release the image! You can copy the frame using
| . cvCloneImage and then do whatever you want with the copy.
|
| release(...)
| release() -> None
| . @brief Closes video file or capturing device.
| .
| . The method is automatically called by subsequent VideoCapture::open and by VideoCapture
| . destructor.
| .
| . The C function also deallocates memory and clears \*capture pointer.
|
| retrieve(...)
| retrieve([, image[, flag]]) -> retval, image
| . @brief Decodes and returns the grabbed video frame.
| .
| . @param [out] image the video frame is returned here. If no frames has been grabbed the image will be empty.
| . @param flag it could be a frame index or a driver specific flag
| . @return `false` if no frames has been grabbed
| .
| . The method decodes and returns the just grabbed frame. If no frames has been grabbed
| . (camera has been disconnected, or there are no more frames in video file), the method returns false
| . and the function returns an empty image (with %cv::Mat, test it with Mat::empty()).
| .
| . @sa read()
| .
| . @note In @ref videoio_c "C API", functions cvRetrieveFrame() and cv.RetrieveFrame() return image stored inside the video
| . capturing structure. It is not allowed to modify or release the image! You can copy the frame using
| . cvCloneImage and then do whatever you want with the copy.
|
| set(...)
| set(propId, value) -> retval
| . @brief Sets a property in the VideoCapture.
| .
| . @param propId Property identifier from cv::VideoCaptureProperties (eg. cv::CAP_PROP_POS_MSEC, cv::CAP_PROP_POS_FRAMES, ...)
| . or one from @ref videoio_flags_others
| . @param value Value of the property.
| . @return `true` if the property is supported by backend used by the VideoCapture instance.
| . @note Even if it returns `true` this doesn't ensure that the property
| . value has been accepted by the capture device. See note in VideoCapture::get()
|
| setExceptionMode(...)
| setExceptionMode(enable) -> None
| . Switches exceptions mode
| . *
| . * methods raise exceptions if not successful instead of returning an error code
$ print(dir(video))
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'get', 'getBackendName', 'getExceptionMode', 'grab', 'isOpened', 'open', 'read', 'release', 'retrieve', 'set', 'setExceptionMode']
那么本篇就是介绍上面的函数使用方法和一些具体注意事项。
如果是用python直接pip安装的opencv,一般都能直接创建成功videocapture对象,但若是编译的opencv用cv2.so文件,本地的ffmpeg相关依赖没有安装好,创建对象可能会报 ‘Segmentation fault’ with gpu/cpu video decoding,当时我在stack上搜索都是说的指针越界,后来又得从头开始编译安装,所以这是需要注意的一个点,然后拿到视频捕获对象,我们可以对其进行参数设置:
capture.set(CV_CAP_PROP_FRAME_WIDTH, 1080);//宽度
capture.set(CV_CAP_PROP_FRAME_HEIGHT, 960);//高度
capture.set(CV_CAP_PROP_FPS, 30);//帧率 帧/秒
capture.set(CV_CAP_PROP_BRIGHTNESS, 1);//亮度 1
capture.set(CV_CAP_PROP_CONTRAST,40);//对比度 40
capture.set(CV_CAP_PROP_SATURATION, 50);//饱和度 50
capture.set(CV_CAP_PROP_HUE, 50);//色调 50
capture.set(CV_CAP_PROP_EXPOSURE, 50);//曝光 50
capture即video对象,上述很多都是默认的,如果不知道参数具体含义,就不要乱修改,因为都是通用参数,另外,有set那么就肯定会有get:
capture.get(CV_CAP_PROP_FRAME_WIDTH);
capture.get(CV_CAP_PROP_FRAME_HEIGHT);
capture.get(CV_CAP_PROP_FPS);
capture.get(CV_CAP_PROP_BRIGHTNESS);
capture.get(CV_CAP_PROP_CONTRAST);
capture.get(CV_CAP_PROP_SATURATION);
capture.get(CV_CAP_PROP_HUE);
capture.get(CV_CAP_PROP_EXPOSURE);
这里的get参数主要获取的是当前videocapture拿到的视频的宽高以及FPS,比如后面要介绍的视频录制,如果不知道当前流是什么比例,就需要用get去拿到相应的值 size = (int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
,另外还有一种简写的方式,参考 OpenCV VideoCapture.get()参数详解,如下:
param | define |
---|---|
cv2.VideoCapture.get(0) | 视频文件的当前位置(播放)以毫秒为单位 |
cv2.VideoCapture.get(1) | 基于以0开始的被捕获或解码的帧索引 |
cv2.VideoCapture.get(2) | 视频文件的相对位置(播放):0=电影开始,1=影片的结尾。 |
cv2.VideoCapture.get(3) | 在视频流的帧的宽度 |
cv2.VideoCapture.get(4) | 在视频流的帧的高度 |
cv2.VideoCapture.get(5) | 帧速率 |
cv2.VideoCapture.get(6) | 编解码的4字-字符代码 |
cv2.VideoCapture.get(7) | 视频文件中的帧数 |
cv2.VideoCapture.get(8) | 返回对象的格式 |
cv2.VideoCapture.get(9) | 返回后端特定的值,该值指示当前捕获模式 |
cv2.VideoCapture.get(10) | 图像的亮度(仅适用于照相机) |
cv2.VideoCapture.get(11) | 图像的对比度(仅适用于照相机) |
cv2.VideoCapture.get(12) | 图像的饱和度(仅适用于照相机) |
cv2.VideoCapture.get(13) | 色调图像(仅适用于照相机) |
cv2.VideoCapture.get(14) | 图像增益(仅适用于照相机)(Gain在摄影中表示白平衡提升) |
cv2.VideoCapture.get(15) | 曝光(仅适用于照相机) |
cv2.VideoCapture.get(16) | 指示是否应将图像转换为RGB布尔标志 |
cv2.VideoCapture.get(17) | × 暂时不支持 |
cv2.VideoCapture.get(18) | 立体摄像机的矫正标注(目前只有DC1394 v.2.x后端支持这个功能) |
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Display the resulting frame
cv2.imshow('frame',gray)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
上述例子用到的是read方式进行图片读取,另外还有两种方式为retrieve和grab,具体的区别可以根据官方文档的说明详解:
reading_and_writing_images_and_video
一般来说,VideoCapure里的read是grab和retrieve的结合,grab是指向下一个帧,retrieve是解码并返回一个帧,而且retrieve比grab慢一些,所以当不需要当前的帧或画面时,可以使用grab跳过,这也叫跳帧。当不需要的时候可以多grab之后再read的话,就能比一直read更省时间,因为没有必要把不需要的帧解码。
ret,frame = cap.read()
success = vidcap.grab()
_,image = vidcap.retrieve()
cap.read()按帧读取视频,ret,frame是获cap.read()方法的两个返回值。其中ret是布尔值,如果读取帧是正确的则返回True,如果文件读取到结尾,它的返回值就为False。frame就是每一帧的图像。grab只会返回成功与否,而retrieve与read类似,会返回flag和img。
录制视频这里的坑主要集中在视频编码器上,具体的看如下我之前写的例子:
def new_MakeVideo(self,begin_pos,end_pos,vidcap):
path = "" # 不会重复的文件名
size = (int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))) # 先试试自动适配大小
# size = (int(vidcap.set(cv.CAP_PROP_FRAME_WIDTH,1080)),int(vidcap.set()))
"""
在Fedora中:DIVX,XVID,MJPG,X264,WMV1,WMV2。(最好使用XVID。MJPG会生成大尺寸的视频。X264会生成非常小的尺寸的视频)
"""
fps = 25
out_video = cv2.VideoWriter(path, cv2.VideoWriter_fourcc('m','j','p','g'), fps, size)
SaveTime = [[begin_pos,end_pos]] # 可以是截取不同时刻
print(SaveTime[0][0])
now_frame = 0 # 帧数记录
while (vidcap.isOpened()):
ret, frame = vidcap.read() # 捕获一帧图像,捕获到ret = True
img_h, img_w, img_ch = frame.shape # 分别拿出高度,长度和信道数
# SaveTime = [[38 * 60 + 38, 39 * 60 + 59], [42 * 60 + 54, 44 * 60 + 11], [47 * 60 + 8, 48 * 60 + 24],[51 * 60 + 20, 52 * 60 + 39]]
if ret:
if img_ch == 1: # 如果当前信道数为1,不能直接将灰度或二值化的图片保存成视频,需要转换成彩色,RGB
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
for i in range(len(SaveTime)):
if now_frame > SaveTime[i][0] * fps and now_frame < SaveTime[i][1] * fps: # 视频帧数在savetime之间
out_video.write(frame)
# print(now_frame,"now_frame..........")
now_frame += 1
if now_frame > SaveTime[0][1] * fps:
break
# 0xFF 是一个十六进制常量,它是 11111111 < / code>二进制。通过对这个常数使用按位AND(& ),它只保留原始的最后8位(在这种情况下,不管 cv2.waitKey (0)是)
k = cv2.waitKey(1) & 0xFF
if k == 27:
break
# cv2.waitKey(25)
else:
break
out_video.release()
上面例子是本篇所有点的汇总,需要关注的是cv2.VideoWriter() 函数,它的第二个参数需要添加cv2.VideoWriter_fourcc(),这个是编码器的意思,需要调取本地视频编码器的支持类型,一般由四个字母组成,opencv-python包中有的编码器类型为:
cv2.VideoWriter_fourcc('M','J','P','G') = motion-jpeg codec
cv2.VideoWriter_fourcc('P','I','M','1') = MPEG-1 codec
cv2.VideoWriter_fourcc('M', 'P', '4', '2') = MPEG-4.2 codec
cv2.VideoWriter_fourcc('D', 'I', 'V', '3') = MPEG-4.3 codec
cv2.VideoWriter_fourcc('D', 'I', 'V', 'X') = MPEG-4 codec
cv2.VideoWriter_fourcc('U', '2', '6', '3') = H263 codec
cv2.VideoWriter_fourcc('I', '2', '6', '3') = H263I codec
cv2.VideoWriter_fourcc('F', 'L', 'V', '1') = FLV1 codec
上面有几个我也不确定有没有,比如说263的我没试过。一般保存mp4格式的视频就用mp42,或者XVID,但前者所用内存空间更小些,但上面的编码器之前都不能满足我的需求,如果你也遇到相同的情况,那么就要考虑重新编译opencv了。
opencv底层的编码器是集成了ffmpeg的部分,但还有非常多的编码器类型没有被集成,如果我们直接填入该编码器的名称,会出现如下情况:
h264
!!!analysis init sucess vith vision:1.0
detect_width: 416 330 (564, 712)
Could not find encoder for codec id 27: Encoder not found
mjpg
OpenCV: FFMPEG: tag 0x47504a4d/‘MJPG’ is not supported with codec id 7 and format ‘mp4 / MP4 (MPEG-4 Part 14)’
OpenCV: FFMPEG: fallback to use tag 0x7634706d/‘mp4v’
avc1
!!!analysis init sucess vith vision:1.0
detect_width: 416 330 (564, 712)
OpenCV: FFMPEG: tag 0x31435641/‘AVC1’ is not supported with codec id 27 and format ‘mp4 / MP4 (MPEG-4 Part 14)’
OpenCV: FFMPEG: fallback to use tag 0x31637661/‘avc1’
Could not find encoder for codec id 27: Encoder not found
所以我们需要先编译本地的ffmpeg,再进行opencv编译,ffmpeg具体可以看我之前的博客,然后opencv编译的还没写,最近没考虑在时间范围内,那么本篇博文到此结束。