- Qt03-绘图、设置不规则窗体
陈大头啊呀
Qtqt开发语言
文章目录一、Qt操作图片二、不规则窗口一、Qt操作图片设置背景图新建Widget项目,在.h头文件中定义paintEvent(QPaintEvent*e)需要导入头文件Widget.hprotected://重写绘图时间,虚函数//如果在窗口内绘图,必须放在绘图事件里实现voidpaintEvent(QPaintEvent*event);Widget.cppvoidWidget::paintEve
- 大模型火爆 2025:LLaMA、Qwen、DeepSeek 核心原理+就业秘籍,快速入门 AI 工程师
weixin_40941102
llama人工智能
1.大模型核心原理:从零开始理解AI模型这些是大型语言模型(LLMs)的核心技术,适合初学者逐步深入学习。以下是详细拆解,让小白也能掌握:LLaMA系列模型核心原理详解:什么是LLaMA?:LLaMA是一个基于人工智能的语言模型,像一个超级聪明的聊天机器人,能理解和生成人类语言。它由Meta公司开发,类似ChatGPT,但更开源、灵活。核心原理:Transformer架构:想象一个工厂流水线,LL
- springboot集成钉钉_钉钉通知机器人与SpringBoot的集成
weixin_39622643
springboot集成钉钉
SpringBootAdmin集成自定义监控告警(2.0.1版本)------钉钉机器人-yuancao24的博客-CSDN博客https://blog.csdn.net/yuancao24/article/details/83576194prometheus-spring-boot-starter:一个管理异常通知的神奇starter,实现了钉钉消息提醒与邮件提醒https://gitee.co
- 【AI热点】MCP协议深度洞察报告
碣石潇湘无限路
人工智能php开发语言
摘要人工智能技术飞速发展,大型语言模型(LLM)如何高效、安全地利用外部数据和工具成为关键问题。模型上下文协议(ModelContextProtocol,简称MCP)是一种由Anthropic于2024年底提出的开放标准协议。它通过统一的客户端-服务器架构,为AI应用与文件系统、数据库、第三方API等外部资源之间提供标准化、安全的双向通信接口。本文将深入解析MCP协议的基本概念和背景、架构设计(通
- 【AI热点】OpenAI新发布API技术深度洞察
碣石潇湘无限路
人工智能
以下内容基于对OpenAI最新发布的AgentAPI及相关工具的官方信息、技术演示和已有报道进行综合解读与深度分析,供您参考。本报告将围绕最新发布的ResponsesAPI(智能体核心新接口)、内置工具(websearch、filesearch、computeruse)、全新的AgentsSDK以及核心安全与可观测性机制,帮助您深入理解其原理、特性及应用价值。一、背景:为什么要推出新的AgentA
- 【AI】Transformer布道:让AI学会“左顾右盼”的超级大脑!(扫盲帖)
碣石潇湘无限路
人工智能transformer深度学习
在LLM爆火的时代,如果还不了解Transformer就太落伍了,下面我第一次尝试用一种更日常、更口语化的方式,把Transformer这个模型讲个大概。你可以想象我们是从“什么是注意力”开始,一步步搭积木,直到把整个Transformer这台“机器”组装起来,然后再看看它能干什么、怎么训练、为什么厉害。主要目的就是帮助更多的非AI专业的人群入门和了解实现AGI的底层架构。1.为什么要有Trans
- jenkins通过ssh连接远程服务器出错解决方案(Algorithm negotiation fail)
luopeng207663436
jenkinsssh服务器
错误截图jenkins.plugins.publish_over.BapPublisherException:FailedtoconnectandinitializeSSHconnection.Message:[Failedtoconnectsessionforconfig[192.168.13.104].Message[Algorithmnegotiationfail]]将需要连接的目标服务器通
- #PyCharm 2024.1新增功能
Dingdangr
pycharmidepython
PyCharm2024.1作为JetBrains专为Python开发者设计的集成开发环境(IDE)的最新版本,带来了众多令人兴奋的新增功能,旨在提升开发者的编程效率和体验。以下是对这些新增功能的详细解析:一、智能编码辅助HuggingFace模型和数据集文档预览PyCharm2024.1引入了HuggingFace模型和数据集的快速文档预览功能。开发者可以直接在PyCharm内部快速获取Huggi
- 2025年Python生态全景:从AI霸主到量子计算,揭秘其不可替代的技术魅力
南玖yy
python人工智能量子计算
在2025年的技术浪潮中,Python凭借其极简的语法、庞大的生态系统以及跨领域融合能力,依然稳坐编程语言界的“头把交椅”。尽管Java等语言在AI领域发起挑战,但Python通过持续的技术革新和生态扩展,展现出不可撼动的生命力。本文将从技术趋势、行业应用与未来挑战三个维度,解析Python的“常青”密码。一、AI领域的持续主导:生态优势与工具革新Python在AI领域的统治地位仍未动摇。尽管有观
- nvm日常使用中常用命令总结
上趣工作室
vue2.xvue3.xvue.js前端javascript
日常开发vue项目中,不同的项目我们可能需要安装不同的node版本,但是为了方便切换node,我们一般会安装一个名称为nvm的工具,这里总结一下,nvm常用的命令:1、为了查看可用的Node.js版本,你可以使用以下命令,这个命令会列出所有可以安装的Node.js版本。:nvmlistavailable如果你想查看特定版本,可以使用grep进行过滤,例如:nvmlistavailable|grep
- 使用agent搭建一个简易的ai论文写作程序
喂喂喂喂位
langChain手搓AIAgent记录人工智能langchain深度学习pythonAIGC
本程序能够自动化完成从规划、研究、撰写到修改的整个论文创作流程。基于LangGraph和LangChain框架构建,利用大型语言模型和搜索工具协同工作,形成了一个完整的论文写作流水线。核心功能分析计划生成功能(plan_node)这个node将接收状态,然后创建一个消息列表。其中一个将是PLAN_PROMPT,那将是SystemMessage。然后创建HumanMessage,传入我们要做的tas
- AI与SDN结合:智能网络的未来之路
不想加班的码小牛
人工智能网络ai
一、引言“网络正在从‘被动响应’走向‘主动思考’。”随着云计算、5G和物联网的爆发式增长,传统网络架构面临灵活性不足、运维成本高等挑战。SDN(软件定义网络)通过控制与转发分离革新了网络管理方式,而AI的引入让SDN从“自动化”迈向“智能化”。二、AI+SDN的技术背景1.1为什么需要AI赋能SDN?传统SDN痛点AI的解决能力流量策略依赖人工规则动态学习流量模式,实时优化策略故障定位耗时(如网络
- DeepSeek:技术创作者的内容革命,从代码到爆文的AI全栈攻略
不想加班的码小牛
人工智能aichatgpt
一、为什么技术创作者需要关注DeepSeek?作为CSDN的资深用户,你是否经历过这些痛点?选题焦虑:技术热点日新月异,如何抓住「大模型优化」或「量子计算落地」等前沿方向?写作卡顿:明明代码跑通了,却在技术原理描述环节反复修改效率瓶颈:既要写技术文档又要运营专栏,时间永远不够用DeepSeek的多模态理解能力(支持代码+自然语言混合输入)和领域自适应特性(自动识别技术文档/教程/测评等文体),让它
- SDN技术解码:架构革新与数字化转型实践指南 ——从控制平面到AI融合的网络进化论
不想加班的码小牛
架构平面人工智能网络协议
一、引言:SDN如何重塑网络价值体系?在数字化浪潮下,传统网络架构的僵化性已成为制约业务创新的瓶颈。SDN(软件定义网络)通过解耦控制与转发平面,将网络从“黑盒设备”转变为“可编程服务”,为云计算、物联网等领域提供动态、智能的网络底座。例如,某金融企业通过SDN实现跨地域数据中心流量智能调度,业务故障恢复时间缩短至分钟级。二、SDN核心架构与技术原理1.三层架构:控制-转发-应用的协同生态•控制层
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- DPU的未来:技术趋势与挑战
绿算技术
DPU架构介绍科技gpu算力硬件工程缓存架构
随着数据中心的不断发展,DPU技术也在快速演进。以下是DPU未来的技术趋势与挑战:1.更高性能·支持更高的网络带宽(如400GbE、800GbE)和更低的延迟。2.更广泛的应用·在AI、5G、物联网等领域,DPU的应用将进一步扩展。3.软件生态的完善·开源工具和开发框架的普及,将降低DPU的开发门槛。4.能效优化·在提升性能的同时,进一步降低功耗,满足绿色计算的需求。总结DPU作为一种新兴的数据处
- C 结构体基础练习题
噜噜soeur
c语言开发语言
这些题目都是我自己练过挑选出来的,有错误请指出哦谢谢定义一个名为“Student”的结构体,其中包含成员的name(姓名)、age(年龄)和totalMarks(总分)。编写一个C程序来输入两个学生的数据,显示他们的信息,并找到总分的平均值。#includestructStudent{charname[50];intage;floattotalMarks;};intmain(){//Declare
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- Vue3使用ECharts入门示例
牧小七
Vueecharts前端javascript
ApacheECharts介绍一个基于JavaScript的开源可视化图表库。官方网址使用示例第一步:NPM安装EChartsnpminstallecharts--save第二步:使用EChartsimport*asechartsfrom'echarts';constmain=ref()consttu=()=>{//基于准备好的dom,初始化echarts实例varmyChart=echarts.
- 外呼系统破局电话管控:AI电销机器人合规运营实战指南
ai_vx_3307623172
WX_3307623172AI机器人外呼中心人工智能机器人云计算语音识别服务器开源软件
随着运营商对电话卡管控日趋严格,某金融科技公司曾因单日外呼超限导致80%号码被封——这一案例暴露出AI电销机器人在效率与合规间的矛盾。但数据显示,采用合规策略的企业外呼接通率仍能保持38%以上,关键在于建立适配监管环境的智能外呼体系。一、破解封号困局的三大核心策略1.运营商白名单通道接入三大运营商均开放企业智能外呼专线,这类线路具备免封号特性。某教育机构接入电信AI-PaaS平台后,日均外呼量稳定
- Langchain如何调用Siliconflow的模型
LJY_LU
langchainpython开发语言AIGC人工智能数据挖掘nlp
硅基流动之前宣布了部分模型免费,那我们就可以调用API来搞些事情。官网(ChatCompletions(siliconflow.cn))上给出了详细的调用方式,我们可以方便的ctrlC和ctrlV而Langchain支持自定义封装LLM(CustomLLM|️Langchain)那我们就可以结合搞点事情,封装好的代码在这,需要自取:fromlangchain.llms.baseimportLLMf
- Go语言对于MySQL的基本操作
yz1.
Gogolangmysql开发语言
一.下载依赖终端中输入:goget-ugithub.com/go-sql-driver/mysql导入包import("database/sql"_"github.com/go-sql-driver/mysql")二.案例packagemain//goget-ugithub.com/go-sql-driver/mysql获取驱动import("database/sql""fmt"_"github.
- 蓝桥杯单片机15届省赛
鱼不再思雨
蓝桥杯c语言单片机51单片机职场和发展学习
蓝桥杯单片机15届省赛案例,基于b站up主,Alice_西风的模板此处仅发布main.c代码,整个工程文件在我发的唯一一个资源那里,学习用#include#include#include#include#include#include#defineucharunsignedchar#defineuintunsignedint//TIMEucharucrtc[]={19,5,20};//LEDbit
- 如何快速开发一款AI小程序?基于微信云开发的实战指南
一键难忘
人工智能小程序微信
如何快速开发一款AI小程序?基于微信云开发的实战指南引言微信小程序凭借其轻便、易推广等特点,已成为应用开发的重要方式之一。而AI技术的快速发展让智能化应用成为可能。通过微信云开发(CloudBase)与小程序结合,开发者可以实现从前端到后端的一站式AI应用开发。本文将深入讲解如何利用微信云开发快速搭建一款AI小程序,展示从模型训练到云端部署的完整流程。准备工作在开始开发之前,确保完成以下准备工作:
- AI大模型学习路线及相关资源推荐
python游乐园
学习资源学习PythonAIAI编程人工智能
哈喽,大家好!本文为大家带来AI大模型学习路线及相关资源推荐,这对于学习掌握AI大模型很有帮助呦,希望大家多多点赞收藏~感谢~~1AI大模型的基础信息1.1什么是AI大模型AI大模型,即人工智能大型模型,是一种基于深度学习技术,具有海量参数、强大算力支持、能够处理和生成复杂数据的人工智能模型。1.2AI大模型的主要特点规模庞大:AI大模型通常包含海量的参数。例如,谷歌的BERT模型在最初发布时就有
- Mac下安装Zed以及Zed对MCP(模型上下文协议)的支持
skywalk8163
人工智能macos前端服务器
Zed是当前新流行的一种编辑器,支持MCP(模型上下文协议)Mac下安装Zed比较简单,直接有安装包,在这里:brewinstall--caskzedMacMonterey下是可以安装上的,亲测有效。配置使用Ctrl+Shift+P调出AI,然后设置使用的模型可以使用deepseek,但是没有找到使用自建服务器的设置方法,有些遗憾。附加学习关于Zed里面的MCP部分,手册:ModelContext
- 数据分布偏移检测:保障模型在生产环境中的稳定性
trust Tomorrow
机器学习python机器学习人工智能深度学习
数据分布偏移检测:保障模型在生产环境中的稳定性引言在机器学习系统从开发环境部署到生产环境的过程中,数据分布偏移问题是影响模型性能的主要挑战之一。当训练数据与生产环境中的数据分布不一致时,即使是经过精心调优的模型也可能表现出明显的性能下降。本文将深入探讨数据分布偏移的检测方法,并提供一套系统化的解决方案,帮助读者构建更加稳健的机器学习系统。1.数据分布偏移问题概述1.1分布偏移的类型数据分布偏移主要
- 蓝桥杯15届省C
KuaCpp
蓝桥杯算法
洛谷P10902回文数组#include#includeusingnamespacestd;intn;constintN=100010;intdiff[N],a[N];intmain(){cin>>n;for(inti=1;i>a[i];for(inti=1;i0&&diff[i+1]>0){diff[i+1]-=min(diff[i],diff[i+1]);}elseif(diff[i]#inc
- LangChain深度解析以及主要应用场景
小Rr
langchainpythondjangonumpy
文章目录LangChain是什么?LangChain的核心组件(1)PromptTemplates(提示模板)原理代码实例应用场景提示词优化策略(2)LLMs(大语言模型)原理代码实例应用场景调优策略(3)Chains(多步任务链)原理代码实例应用场景优化策略(4)Memory(记忆)原理代码实例应用场景优化策略(5)Agents(智能代理)原理代码实例应用场景优化策略案例分享案例1:电商智能客服
- AI Agent 时代开幕-Manus AI与OpenAI Agent SDK掀起新风暴
新加坡内哥谈技术
人工智能自然语言处理语言模型深度学习copilot
【本周AI新闻:AIAgent时代开幕-ManusAI与OpenAIAgentSDK掀起新风暴】https://www.bilibili.com/video/BV1bkQyYCEvQ/?share_source=copy_web&vd_source=32ed33e1165d68429b2e2eb4749f3f26最近AI圈子里最火的话题非Manus莫属!这款由中国武汉创业公司“蝴蝶效应”推出的通用
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f