python 反传播_python里反向传播算法详解

反向传播的目的是计算成本函数C对网络中任意w或b的偏导数。一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差。这是流行的梯度下降算法。而偏导数给出了最大上升的方向。因此,关于反向传播算法,我们继续查看下文。

我们向相反的方向迈出了一小步——最大下降的方向,也就是将我们带到成本函数的局部最小值的方向。

图示演示:

反向传播算法中Sigmoid函数代码演示:

# 实现 sigmoid 函数

return 1 / (1 + np.exp(-x))

def sigmoid_derivative(x):

# sigmoid 导数的计算

return sigmoid(x)*(1-sigmoid(x))

反向传播算法中ReLU 函数导数函数代码演示:

def relu_derivative(x): # ReLU 函数的导数

d = np.array(x, copy=True) # 用于保存梯度的张量

d[x < 0] = 0 # 元素为负的导数为 0

d[x >= 0] = 1 # 元素为正的导数为 1

return d

实例扩展:

BP反向传播算法Python简单实现

import numpy as np

# "pd" 偏导

def sigmoid(x):

return 1 / (1 + np.exp(-x))

def sigmoidDerivationx(y):

return y * (1 - y)

if __name__ == "__main__":

#初始化

bias = [0.35, 0.60]

weight = [0.15, 0.2, 0.25, 0.3, 0.4, 0.45, 0.5, 0.55]

output_layer_weights = [0.4, 0.45, 0.5, 0.55]

i1 = 0.05

i2 = 0.10

target1 = 0.01

target2 = 0.99

alpha = 0.5 #学习速率

numIter = 10000 #迭代次数

for i in range(numIter):

#正向传播

neth1 = i1*weight[1-1] + i2*weight[2-1] + bias[0]

neth2 = i1*weight[3-1] + i2*weight[4-1] + bias[0]

outh1 = sigmoid(neth1)

outh2 = sigmoid(neth2)

neto1 = outh1*weight[5-1] + outh2*weight[6-1] + bias[1]

neto2 = outh2*weight[7-1] + outh2*weight[8-1] + bias[1]

outo1 = sigmoid(neto1)

outo2 = sigmoid(neto2)

print(str(i) + ", target1 : " + str(target1-outo1) + ", target2 : " + str(target2-outo2))

if i == numIter-1:

print("lastst result : " + str(outo1) + " " + str(outo2))

#反向传播

#计算w5-w8(输出层权重)的误差

pdEOuto1 = - (target1 - outo1)

pdOuto1Neto1 = sigmoidDerivationx(outo1)

pdNeto1W5 = outh1

pdEW5 = pdEOuto1 * pdOuto1Neto1 * pdNeto1W5

pdNeto1W6 = outh2

pdEW6 = pdEOuto1 * pdOuto1Neto1 * pdNeto1W6

pdEOuto2 = - (target2 - outo2)

pdOuto2Neto2 = sigmoidDerivationx(outo2)

pdNeto1W7 = outh1

pdEW7 = pdEOuto2 * pdOuto2Neto2 * pdNeto1W7

pdNeto1W8 = outh2

pdEW8 = pdEOuto2 * pdOuto2Neto2 * pdNeto1W8

# 计算w1-w4(输出层权重)的误差

pdEOuto1 = - (target1 - outo1) #之前算过

pdEOuto2 = - (target2 - outo2) #之前算过

pdOuto1Neto1 = sigmoidDerivationx(outo1) #之前算过

pdOuto2Neto2 = sigmoidDerivationx(outo2) #之前算过

pdNeto1Outh1 = weight[5-1]

pdNeto2Outh2 = weight[7-1]

pdEOuth1 = pdEOuto1 * pdOuto1Neto1 * pdNeto1Outh1 + pdEOuto2 * pdOuto2Neto2 * pdNeto1Outh1

pdOuth1Neth1 = sigmoidDerivationx(outh1)

pdNeth1W1 = i1

pdNeth1W2 = i2

pdEW1 = pdEOuth1 * pdOuth1Neth1 * pdNeth1W1

pdEW2 = pdEOuth1 * pdOuth1Neth1 * pdNeth1W2

pdNeto1Outh2 = weight[6-1]

pdNeto2Outh2 = weight[8-1]

pdOuth2Neth2 = sigmoidDerivationx(outh2)

pdNeth2W3 = i1

pdNeth2W4 = i2

pdEOuth2 = pdEOuto1 * pdOuto1Neto1 * pdNeto1Outh2 + pdEOuto2 * pdOuto2Neto2 * pdNeto2Outh2

pdEW3 = pdEOuth2 * pdOuth2Neth2 * pdNeth2W3

pdEW4 = pdEOuth2 * pdOuth2Neth2 * pdNeth2W4

#权重更新

weight[1-1] = weight[1-1] - alpha * pdEW1

weight[2-1] = weight[2-1] - alpha * pdEW2

weight[3-1] = weight[3-1] - alpha * pdEW3

weight[4-1] = weight[4-1] - alpha * pdEW4

weight[5-1] = weight[5-1] - alpha * pdEW5

weight[6-1] = weight[6-1] - alpha * pdEW6

weight[7-1] = weight[7-1] - alpha * pdEW7

weight[8-1] = weight[8-1] - alpha * pdEW8

# print(weight[1-1])

# print(weight[2-1])

# print(weight[3-1])

# print(weight[4-1])

# print(weight[5-1])

# print(weight[6-1])

# print(weight[7-1])

# print(weight[8-1])

到此这篇关于python里反向传播算法详解的文章就介绍到这了,更多相关python里反向传播算法是什么内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

本文标题: python里反向传播算法详解

本文地址: http://www.cppcns.com/jiaoben/python/365867.html

你可能感兴趣的:(python,反传播)