AlexNet网络结构图

Size / Operation Filter Depth Stride Padding Number of Parameters Forward Computation
3* 227 * 227
Conv1 + Relu 11 * 11 96 4 (11113 + 1) * 96=34944 (11113 + 1) * 96 * 55 * 55=105705600
96 * 55 * 55
Max Pooling 3 * 3 2
96 * 27 * 27
Norm
Conv2 + Relu 5 * 5 256 1 2 (5 * 5 * 96 + 1) * 256=614656 (5 * 5 * 96 + 1) * 256 * 27 * 27=448084224
256 * 27 * 27
Max Pooling 3 * 3 2
256 * 13 * 13
Norm
Conv3 + Relu 3 * 3 384 1 1 (3 * 3 * 256 + 1) * 384=885120 (3 * 3 * 256 + 1) * 384 * 13 * 13=149585280
384 * 13 * 13
Conv4 + Relu 3 * 3 384 1 1 (3 * 3 * 384 + 1) * 384=1327488 (3 * 3 * 384 + 1) * 384 * 13 * 13=224345472
384 * 13 * 13
Conv5 + Relu 3 * 3 256 1 1 (3 * 3 * 384 + 1) * 256=884992 (3 * 3 * 384 + 1) * 256 * 13 * 13=149563648
256 * 13 * 13
Max Pooling 3 * 3 2
256 * 6 * 6
Dropout (rate 0.5)
FC6 + Relu 256 * 6 * 6 * 4096=37748736 256 * 6 * 6 * 4096=37748736
4096
Dropout (rate 0.5)
FC7 + Relu 4096 * 4096=16777216 4096 * 4096=16777216
4096
FC8 + Relu 4096 * 1000=4096000 4096 * 1000=4096000
1000 classes
Overall 62369152=62.3 million 1135906176=1.1 billion
Conv VS FC "Conv:3.7million (6%) FC: 58.6 million (94% )"

https://www.cnblogs.com/wangguchangqing/p/10333370.html

你可能感兴趣的:(网络,深度学习,神经网络)