SSD要点回顾

SSD要点回顾

  • SSD
    • 1 数据增强和编码
      • 1.1 数据增强
      • 1.2 制作标签y_true
    • 2 主干网络
      • 2.1 SSD_head
      • 2.2 生成先验框
    • 3 损失函数
      • 3.1 损失函数流程
    • 4 预测
      • 4.1 预测流程
      • 4.2 检测框
      • 4.3 解码

SSD

SSD是单阶段目标检测算法,英文名Single Shot MultiBox Detector,简称一击必中。

''' 
1. 基本思想:在多特征图上生成先验框进行分类和回归。
2. 优    点:检测速度快,在不同的特征层上进行检测,这样大、中、小物体都被考虑进来。
3. 缺    点:先验框设置靠经验。个人看来是简化版的Faster R-CNN,Faster R-CNN比SSD多筛选一次,速度相对慢。而且特征也没SSD多。
4. 改    进:SSD使用数据增强、多特征图、难负样本挖掘等操作,以上操作提高模型泛化能力,提高大中小物体的识别能力及缓解样本不均衡问题。

''' 

代码流程

''' 
1. Augment + Encoder :img[b,300,300,3]; boxes,cls --> encoder() --> y_true[b,8732,33]
2. model   : img --> SSD300() --> y_pred[b,8732,33]
3. Loss    : Loss(y_true,y_pred) --> Noob_loss + Coob_loss + Loc_loss
4. Predict : img --> SSD300() --> y_pred --> decoder --> NMS --> draw boxes and labels

''' 

1 数据增强和编码

在数据处理部分,包含两个重要函数,数据增强函数img, y = get_random_data(annotation_line,self.image_size[0:2]) 和编码函数y = self.bbox_util.assign_boxes(y)。数据处理流程如下:

''' 
1. 读入数据集中的数据,打乱数据顺序。
    ssd-keras-master/VOCdevkit/VOC2007/JPEGImages/000014.jpg 72,163,302,228,5 185,194,500,316,6 416,180,500,222,6 314,8,344,65,14 331,4,361,61,14 357,8,401,61,14
    ssd-keras-master/VOCdevkit/VOC2007/JPEGImages/000028.jpg 63,18,374,500,7
2. 遍历每一行数据,数据增强。
3. 得到真实框在图片上的相对位置,把类别变成one_hot格式。把真实框和类别放在堆叠再一起。
4. 真实框和类编码得到y_true.
5. img归一化,利用生成器,分批次处理img 和真实框和类编码得到y_true。

''' 
def generate(self, train=True):
        while True:
            if train:
                # 打乱数据顺序
                shuffle(self.train_lines)
                lines = self.train_lines
            else:
                shuffle(self.val_lines)
                lines = self.val_lines
            inputs = []
            targets = []
            for annotation_line in lines:  # img,y =  image_data, box_data
                img, y = self.get_random_data(annotation_line,self.image_size[0:2]) # y.shap3[4+cls],数据增强操作
                if len(y) != 0:   # 归一化
                    boxes = np.array(y[:,:4],dtype=np.float32)
                    boxes[:,0] = boxes[:,0]/self.image_size[1]
                    boxes[:,1] = boxes[:,1]/self.image_size[0]
                    boxes[:,2] = boxes[:,2]/self.image_size[1]
                    boxes[:,3] = boxes[:,3]/self.image_size[0]
                    one_hot_label = np.eye(self.num_classes)[np.array(y[:,4],np.int32)]  # 不包含背景
                    if ((boxes[:,3]-boxes[:,1]) <= 0).any() and ((boxes[:,2]-boxes[:,0])<=0).any():
                        continue

                    y = np.concatenate([boxes,one_hot_label],axis=-1) # y[n,4+20(one_hot)]
                # 编码操作 y[ 框 + cls ]
                y = self.bbox_util.assign_boxes(y)     # 制作成标签y_true[4+1+cls+8]
                inputs.append(img)
                targets.append(y)
                if len(targets) == self.batch_size:  
                    tmp_inp = np.array(inputs)
                    tmp_targets = np.array(targets)
                    inputs = []
                    targets = []
                    yield preprocess_input(tmp_inp), tmp_targets  # [n,],[n,]

1.1 数据增强

SSD中对数据和框分别数据增强,包括缩放、剪切、随机翻转、色度(亮度、饱和度)调整及对真实框缩放、随机翻转、剪切操作。

''' 
img, y = self.get_random_data(annotation_line,self.image_size[0:2])
1. 图片缩放
2. 图片平移
3. 图片随机翻转
4. 图片亮度、饱和度调整

5. 真实框缩放
6. 真实框随机翻转
7. 真实框平移操作
''' 
def get_random_data(self, annotation_line, input_shape, jitter=.1, hue=.1, sat=1.1, val=1.1):
        '''r实时数据增强的随机预处理'''
        line = annotation_line.split()
        image = Image.open(line[0])
        iw, ih = image.size
        h, w = input_shape
        box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])

        # resize image 缩放
        new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter)
        scale = rand(.25, 2)
        if new_ar < 1:
            nh = int(scale*h)  
            nw = int(nh*new_ar)
        else:
            nw = int(scale*w)
            nh = int(nw/new_ar)
        image = image.resize((nw,nh), Image.BICUBIC)

        # place image  剪切
        dx = int(rand(0, w-nw))
        dy = int(rand(0, h-nh))
        new_image = Image.new('RGB', (w,h), (128,128,128))
        new_image.paste(image, (dx, dy))
        image = new_image

        # flip image or not # 翻转
        flip = rand()<.5
        if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)

        # distort image   亮度、饱和度调整
        hue = rand(-hue, hue)
        sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat)
        val = rand(1, val) if rand()<.5 else 1/rand(1, val)
        x = rgb_to_hsv(np.array(image)/255.)
        x[..., 0] += hue
        x[..., 0][x[..., 0]>1] -= 1
        x[..., 0][x[..., 0]<0] += 1
        x[..., 1] *= sat
        x[..., 2] *= val
        x[x>1] = 1
        x[x<0] = 0
        image_data = hsv_to_rgb(x)*255 # numpy array, 0 to 1

        # correct boxes
        box_data = np.zeros((len(box),5))   # [n,5]
        if len(box)>0:
            np.random.shuffle(box)
            box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx  # 缩放+平移
            box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
            if flip: box[:, [0,2]] = w - box[:, [2,0]] # 翻转
            box[:, 0:2][box[:, 0:2]<0] = 0    # 筛选
            box[:, 2][box[:, 2]>w] = w
            box[:, 3][box[:, 3]>h] = h
            box_w = box[:, 2] - box[:, 0]
            box_h = box[:, 3] - box[:, 1]
            box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box
            box_data = np.zeros((len(box),5))
            box_data[:len(box)] = box
        if len(box) == 0:
            return image_data, []

        if (box_data[:,:4]>0).any():
            return image_data, box_data
        else:
            return image_data, []  # [300,300,3],[n,5]

1.2 制作标签y_true

''' 
y = self.bbox_util.assign_boxes(y)  
1. 模版assignment[8732,33]。33 = 4+1+20+8
2. 对所有真实框编码。根据真实框和先验框的IoU找出匹配真实框的先验框,根据编码公式,计算中心点和宽高偏移。
3. 在预测过程中,要求每个先验框只匹配一个真实框,根据这个条件对预测偏移筛选。
''' 
def assign_boxes(self, boxes): # boxes.shape [-1,框+类别] 筛选框,得到 y_true  ;  y = self.bbox_util.assign_boxes(y)
        assignment = np.zeros((self.num_priors, 4 + self.num_classes + 8))  # assignment.shape (8732, 33) y.shape=(7, 24)
        assignment[:, 4] = 1.0  # 背景的概率
        if len(boxes) == 0:
            return assignment
        # 对每一个真实框都进行iou计算 encoded_boxes.shape = (7, 43660) 7 是图片有7个框,43660 = 8732*5
        encoded_boxes = np.apply_along_axis(self.encode_box, 1, boxes[:, :4])  # 找到框并编码[ num_priors , 4 + 1 ]
        # 每一个真实框的编码后的值,和iou encoded_boxes.shape = (7, 43660)
        encoded_boxes = encoded_boxes.reshape(-1, self.num_priors, 5) # encoded_boxes.shape = (7, 8732, 5)
        
        # 一个真实框可以匹配多个先验框,但是一个先验框只能拟合一个真实框,所以找出先验框最匹配的真实框,
        best_iou = encoded_boxes[:, :, -1].max(axis=0)         # encoded_boxes[:, :, -1].shape :(7, 8732) # best_iou .shape = (8732,)
        best_iou_idx = encoded_boxes[:, :, -1].argmax(axis=0)  # 取每个先验框对应iou最大的值 , (8732,) 每个先验框对应真实框的坐标
        best_iou_mask = best_iou > 0                           # 取iou大于零的框的小标
        best_iou_idx = best_iou_idx[best_iou_mask]             # 取iou大于零的框 ; best_iou_idx.shape =  (64,)

        assign_num = len(best_iou_idx)                         # 可以用来预测先验框的个数 ;  assign_num = 64
        # 保留重合程度最大的先验框的应该有的预测结果
        encoded_boxes = encoded_boxes[:, best_iou_mask, :]     # encoded_boxes.shape = (7, 64, 5)
        assignment[:, :4][best_iou_mask] = encoded_boxes[best_iou_idx , np.arange(assign_num),:4] # 偏移
        # 4代表为背景的概率为1,前景的概率设为1。
        assignment[:, 4][best_iou_mask] = 0                    #  前景
        assignment[:, 5:-8][best_iou_mask] = boxes[best_iou_idx, 4:]    # 类 别
        assignment[:, -8][best_iou_mask] = 1                   # 代表有物体?为什么有8,因为y_pre也有8吗?
        # 通过assign_boxes我们就获得了,输入进来的这张图片,应该有的预测结果是什么样子的
        return assignment    #  assignment.shape = (8732, 33)  33 = 4 + 21 + 8

2 主干网络

SSD用VGG作为主干网络,提取VGG16第三、四次下采样的特征图得到Conv4_3、fc7,之后又继续下采样得到Conv6,Conv7,Conv8,Conv9,一共7个特征层用来分类和回归。根据每个特征层生成先验框。

''' 
 fea        shape       nums_anchors       reg           cls         anchor_minmax     wh_radio
ConV4-3   [38,38,512]        4         [38,38,4x4]   [38,38,4x21]      [30,60]         [0.5,1,1,2]
  fc7     [19,19,1024]       6         [19,19,6x4]   [19,19,6x21]      [60,111]        [1/3,0.5,1,1,2,3]
ConV6-2   [10,10,512]        6         [10,10,6x4]   [10,10,6x21]      [111,162]       [1/3,0.5,1,1,2,3]
ConV7-2   [ 5,5, 256]        6         [5, 5, 6x4]   [5, 5, 6x21]      [162,213]       [1/3,0.5,1,1,2,3]
ConV8-2   [ 3,3, 256]        4         [3, 3, 4x4]   [3, 3, 4x21]      [213,264]       [0.5,1,1,2]
ConV9-2   [ 1,1, 256]        4         [1, 1, 4x4]   [1, 1, 4x21]      [64,315]        [0.5,1,1,2]

38*38*4+19*19*6+10*10*6+5*5*6+3*3*4+1*1*4 = 8732
y_pred [b,8732,4+21+8]
'''

2.1 SSD_head

'''
1. 对特征层分别进行两次卷积,包括分类和回归,通道数分别为num_boxes*4,num_boxes*cls.

'''
net = VGG16(input_tensor)
    #-----------------------将提取到的主干特征进行处理---------------------------#
    # 对conv4_3进行处理 38,38,512
    net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3'])
    num_priors = 4
    # 预测框的处理
    # num_priors表示每个网格点先验框的数量,4是x,y,h,w的调整
    # 'conv4_3_norm_mbox_loc'(?,38,38,16)
    net['conv4_3_norm_mbox_loc'] = Conv2D(num_priors * 4, kernel_size=(3,3), padding='same', name='conv4_3_norm_mbox_loc')(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_loc_flat'] = Flatten(name='conv4_3_norm_mbox_loc_flat')(net['conv4_3_norm_mbox_loc'])
    # num_priors表示每个网格点先验框的数量,num_classes是所分的类 [?,38,38,4*21]
    net['conv4_3_norm_mbox_conf'] = Conv2D(num_priors * num_classes, kernel_size=(3,3), padding='same',name='conv4_3_norm_mbox_conf')(net['conv4_3_norm'])
    net['conv4_3_norm_mbox_conf_flat'] = Flatten(name='conv4_3_norm_mbox_conf_flat')(net['conv4_3_norm_mbox_conf'])
    priorbox = PriorBox(img_size, 30.0,max_size = 60.0, aspect_ratios=[2],
                        variances=[0.1, 0.1, 0.2, 0.2],
                        name='conv4_3_norm_mbox_priorbox')  # priorbox [? ,5776,8]
    net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm']) # prior_boxes_tensor.shape :TensorShape([batch_size, Dimension(5776), Dimension(8)])


2.2 生成先验框

'''
1. 根据先验框宽高极值和宽高比,计算本层先验框的各个宽高h,w。
2. 根据特征层尺寸生成先验框的中心点坐标cx,cy。
3. 以上两步数据得到原图上所有的先验框左上角和右下角坐标。

'''
class PriorBox(Layer):   # img_size, 30.0,max_size = 60.0, aspect_ratios=[2],variances=[0.1, 0.1, 0.2, 0.2],
    def __init__(self, img_size, min_size, max_size=None, aspect_ratios=None,
                 flip=True, variances=[0.1], clip=True, **kwargs):

        if K.image_dim_ordering() == 'tf':
            self.waxis = 2
            self.haxis = 1
        else:
            self.waxis = 3
            self.haxis = 2

        self.img_size = img_size    # (300,300)
        if min_size <= 0:
            raise Exception('min_size must be positive.')

        self.min_size = min_size  # 30.0
        self.max_size = max_size  # 60.
        self.aspect_ratios = [1.0]  # aspect_ratios[1.0, 1.0, 2.0, 0.5]
        if max_size:
            if max_size < min_size:
                raise Exception('max_size must be greater than min_size.')
            self.aspect_ratios.append(1.0)
        if aspect_ratios:
            for ar in aspect_ratios:
                if ar in self.aspect_ratios:
                    continue
                self.aspect_ratios.append(ar)
                if flip:
                    self.aspect_ratios.append(1.0 / ar)
        self.variances = np.array(variances)   # variances=[0.1, 0.1, 0.2, 0.2]
        self.clip = True
        super(PriorBox, self).__init__(**kwargs)

    def compute_output_shape(self, input_shape):
        num_priors_ = len(self.aspect_ratios)    # 4
        layer_width = input_shape[self.waxis]    # waxis = 2;layer_width = 38
        layer_height = input_shape[self.haxis]   # 38
        num_boxes = num_priors_ * layer_width * layer_height   # 4*38*38=5776
        return (input_shape[0], num_boxes, 8)

    def call(self, x, mask=None):
        if hasattr(x, '_keras_shape'):
            input_shape = x._keras_shape    # (? 38,38,512)
        elif hasattr(K, 'int_shape'):
            input_shape = K.int_shape(x)
        # ------------------ #
        #   获取宽和高
        # ------------------ #
        layer_width = input_shape[self.waxis]   # 38
        layer_height = input_shape[self.haxis]  # 38

        img_width = self.img_size[0]     # 300
        img_height = self.img_size[1]    # 300
        box_widths = []   #[30.0, 42.43, 42.43, 21.21, ]
        box_heights = []  #[30.0, 42.43, 21.21, 42.43,]
        for ar in self.aspect_ratios:
            if ar == 1 and len(box_widths) == 0:
                box_widths.append(self.min_size)
                box_heights.append(self.min_size)
            elif ar == 1 and len(box_widths) > 0:
                box_widths.append(np.sqrt(self.min_size * self.max_size))
                box_heights.append(np.sqrt(self.min_size * self.max_size))
            elif ar != 1:
                box_widths.append(self.min_size * np.sqrt(ar))
                box_heights.append(self.min_size / np.sqrt(ar))
        box_widths = 0.5 * np.array(box_widths)  # [[15. 21.21320344 21.21320344 10.60660172]]
        box_heights = 0.5 * np.array(box_heights) # [[15. 21.21320344  10.60660172  21.21320344]]
        step_x = img_width / layer_width     # 300/38 = 7.89
        step_y = img_height / layer_height   #
        linx = np.linspace(0.5 * step_x, img_width - 0.5 * step_x,
                           layer_width)  # [3.9,...,296]  d = 7.89
        liny = np.linspace(0.5 * step_y, img_height - 0.5 * step_y,
                           layer_height)
        centers_x, centers_y = np.meshgrid(linx, liny)
        centers_x = centers_x.reshape(-1, 1)
        centers_y = centers_y.reshape(-1, 1)

        num_priors_ = len(self.aspect_ratios)    # 4
        # 每一个先验框需要两个(centers_x, centers_y),前一个用来计算左上角,后一个计算右下角
        prior_boxes = np.concatenate((centers_x, centers_y), axis=1)  # [1444,2]
        prior_boxes = np.tile(prior_boxes, (1, 2 * num_priors_))      # [1444,16]
        
        # 获得先验框的左上角和右下角
        prior_boxes[:, ::4] -= box_widths
        prior_boxes[:, 1::4] -= box_heights
        prior_boxes[:, 2::4] += box_widths
        prior_boxes[:, 3::4] += box_heights

        # 变成小数的形式
        prior_boxes[:, ::2] /= img_width  #  img_width 300
        prior_boxes[:, 1::2] /= img_height
        prior_boxes = prior_boxes.reshape(-1, 4)  # 1444*4 = 5776  [5776,4]

        prior_boxes = np.minimum(np.maximum(prior_boxes, 0.0), 1.0)

        num_boxes = len(prior_boxes) # 5776
        
        if len(self.variances) == 1:
            variances = np.ones((num_boxes, 4)) * self.variances[0]
        elif len(self.variances) == 4:
            variances = np.tile(self.variances, (num_boxes, 1))  # [5776,4]
        else:
            raise Exception('Must provide one or four variances.')

        prior_boxes = np.concatenate((prior_boxes, variances), axis=1)   # [5776,8]
        prior_boxes_tensor = K.expand_dims(K.variable(prior_boxes), 0)   # [1,5776,8]
    
        pattern = [tf.shape(x)[0], 1, 1]  # x[batch_size,38,38,512] pattern[batch_size,1,1]
        prior_boxes_tensor = tf.tile(prior_boxes_tensor, pattern) # prior_boxes_tensor[batch_size, 5776, 8]

        return prior_boxes_tensor


3 损失函数

SSD的损失函数在计算正负样本损失的时候,把所有预测类别作为正样本,背景预测作为负样本,由于正负样本数量相对不平衡,因此设计负样本数量在正样本的3倍,和总样本减正样本数量之间取最小值。

3.1 损失函数流程

'''
1. 正样本分类损失,回归损失。
2. 难负样本挖掘。对负样本按照概率从小到大排列,取前K个负样本。计算负样本损失。
3. 总损失 = 正样本损失+负样本损失+回归损失

'''
    def compute_loss(self, y_true, y_pred):  # [b,8732,33]
        batch_size = tf.shape(y_true)[0]      # 4       # 输入图片的数量
        num_boxes = tf.to_double(tf.shape(y_true)[1])  # 8732.0
    
        conf_loss = _softmax_loss(y_true[:, :, 4:-8],  # 4+21+4+4
                                  y_pred[:, :, 4:-8])  # (4, 8732, 21) -> (4, 8732)
        loc_loss = _l1_smooth_loss(y_true[:, :, :4],y_pred[:, :, :4]) # (4, 8732, 4) -> (4, 8732)
        num_pos = tf.reduce_sum(y_true[:, :, -8], axis=-1)      # shape=(4,) array([12., 22., 19.,  9.])
    
        pos_loc_loss = tf.reduce_sum(loc_loss * y_true[:, :, -8],
                                     axis=1)    # [4,8732]->[4]
        pos_conf_loss = tf.reduce_sum(conf_loss * y_true[:, :, -8],
                                      axis=1)   # [4,8732]->[4]
        num_neg = tf.minimum(neg_pos_ratio * num_pos, # array([36., 66., 57., 27.]) ; array([8720., 8710., 8713., 8723.])
                             num_boxes - num_pos)     # array([36., 66., 57., 27.])
        pos_num_neg_mask = tf.greater(num_neg, 0)     # array([ True,  True,  True,  True])
        has_min = tf.to_float(tf.reduce_any(pos_num_neg_mask)) #  1.0
        num_neg = tf.concat( axis=0,values=[num_neg,  # 如果不存在负样本,就设置负样本的数量
                                            [(1 - has_min) * negatives_for_hard]]) #  array([36., 66., 57., 27.,  0.])
        num_neg_batch = tf.reduce_mean(tf.boolean_mask(num_neg,  #  46.5
                                                       tf.greater(num_neg, 0)))
        num_neg_batch = tf.to_int32(num_neg_batch)  # 46
        # conf的起始[5:-8]
        confs_start = 4 + background_label_id + 1  # confs_start = 5
        # conf的结束
        confs_end = confs_start + num_classes - 1  # 25
    
        max_confs = tf.reduce_max(y_pred[:, :, confs_start:confs_end],
                                  axis=2)  # shape=(4, 8732, 25)-->(4, 8732)
        _, indices = tf.nn.top_k(max_confs * (1 - y_true[:, :, -8]), # indices.shape=(4,46)
                                 k=num_neg_batch)  # num_neg_batch=46
        # 找到其在1维上的索引
        batch_idx = tf.expand_dims(tf.range(0, batch_size), 1) # batch_idx.shape = (4, 1)
        batch_idx = tf.tile(batch_idx, (1, num_neg_batch))     # batch_idx.shape = (4,46)
        full_indices = (tf.reshape(batch_idx, [-1]) * tf.to_int32(num_boxes) +  # num_boxes=8732
                        tf.reshape(indices, [-1]))  # full_indices.shape :46*4 =184
        neg_conf_loss = tf.gather(tf.reshape(conf_loss, [-1]),
                                  full_indices)  # TensorShape([Dimension(184)])
        neg_conf_loss = tf.reshape(neg_conf_loss,
                                   [batch_size, num_neg_batch])  # [184] -- > [4,46]
        neg_conf_loss = tf.reduce_sum(neg_conf_loss, axis=1)  # [4,46] --> [4]
    
        num_pos = tf.where(tf.not_equal(num_pos, 0), num_pos,      # array([12., 22., 19.,  9.])
                           tf.ones_like(num_pos))  # array([1., 1., 1., 1.])
        total_loss = tf.reduce_sum(pos_conf_loss) + tf.reduce_sum(neg_conf_loss)
        total_loss /= tf.reduce_sum(num_pos)
        total_loss += tf.reduce_sum(alpha * pos_loc_loss) / tf.reduce_sum(num_pos)
        return total_loss

4 预测

4.1 预测流程

'''
1. 图片预处理后送入模型,计算得到预测结果。
2. 对预测结果解码、筛选。
3. 画框

'''
def detect_image(self, image):
        image_shape = np.array(np.shape(image)[0:2])  # 图片尺寸
        crop_img, x_offset, y_offset = letterbox_image(image, (self.model_image_size[0], self.model_image_size[1]))  # 加入灰条
        photo = np.array(crop_img, dtype=np.float64) # photo.shape=(300,300,3)

        # 图片预处理,归一化、预测 ,[300, 300, 3]-->[1,300, 300, 3]
        photo = preprocess_input(np.reshape(photo, [1, self.model_image_size[0], self.model_image_size[1], 3]))
        preds = self.ssd_model.predict(photo)  # predictions(Concatenate)(None, 8732, 33) 4+21+8=33

        # 将预测结果进行解码-->筛选-->nms-->选出top_k
        results = self.bbox_util.detection_out(preds, confidence_threshold=self.confidence)

        if len(results[0]) <= 0:
            return image

        # 筛选出其中得分高于confidence的框 ,results[label,conf,det_xmin, det_ymin, det_xmax, det_ymax]
        det_label = results[0][:, 0]
        det_conf = results[0][:, 1]
        det_xmin, det_ymin, det_xmax, det_ymax = results[0][:, 2], results[0][:, 3], results[0][:, 4], results[0][:, 5]
        top_indices = [i for i, conf in enumerate(det_conf) if conf >= self.confidence]
        top_conf = det_conf[top_indices]
        top_label_indices = det_label[top_indices].tolist()
        top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(det_xmin[top_indices], -1), np.expand_dims(
            det_ymin[top_indices], -1), np.expand_dims(det_xmax[top_indices], -1), np.expand_dims(det_ymax[top_indices],
                                                                                                  -1)

        # 去掉灰条
        boxes = ssd_correct_boxes(top_ymin, top_xmin, top_ymax, top_xmax,  # [200,4]
                                  np.array([self.model_image_size[0], self.model_image_size[1]]), image_shape)

        font = ImageFont.truetype(font='model_data/simhei.ttf',
                                  size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))

        thickness = (np.shape(image)[0] + np.shape(image)[1]) // self.model_image_size[0]

        for i, c in enumerate(top_label_indices):  #  [2.0, 15.0, 15.0, 15.0, 7.0]
            predicted_class = self.class_names[int(c) - 1]
            score = top_conf[i]

            top, left, bottom, right = boxes[i]  # np.shape(image)=(1330, 1330, 3)
            top = top - 5  #
            left = left - 5
            bottom = bottom + 5
            right = right + 5

            top = max(0, np.floor(top + 0.5).astype('int32'))     # 向上取整,让框在image之内
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32'))
            right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32'))

            # 画框框
            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            label = label.encode('utf-8')
            print(label)

            # label在框中的位置
            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])  # xy
            else:
                text_origin = np.array([left, top + 1])

            for i in range(thickness):
                draw.rectangle(
                    [left + i, top + i, right - i, bottom - i],
                    outline=self.colors[int(c) - 1])  # 画框
            draw.rectangle(
                [tuple(text_origin), tuple(text_origin + label_size)],
                fill=self.colors[int(c) - 1])    # 画label
            draw.text(text_origin, str(label, 'UTF-8'), fill=(0, 0, 0), font=font) # 写文字
            del draw
        return image


4.2 检测框

'''
1. 解码
2. 筛选
3. nms
4. 选出top_k

'''
def detection_out(self, predictions, background_label_id=0, keep_top_k=200,
                      confidence_threshold=0.5):
        # 网络预测的结果  [4+1+20+4+4] 预测偏移 + 置信度 + 类别 + 先验框 + variance[0.1,0.1,0.2,0.2]
        mbox_loc = predictions[:, :, :4]          # (1, 8732, 4)
        # 0.1,0.1,0.2,0.2
        variances = predictions[:, :, -4:]        # (1, 8732, 4)
        # 先验框
        mbox_priorbox = predictions[:, :, -8:-4]  # (1, 8732, 4)
        # 置信度
        mbox_conf = predictions[:, :, 4:-8]       # (1, 8732, 21)
        results = []
        # 处理每张图片
        for i in range(len(mbox_loc)):
            results.append([])
            decode_bbox = self.decode_boxes(mbox_loc[i], mbox_priorbox[i],  variances[i]) # 解码 decode_bbox.shape: (8732, 4)

            for c in range(self.num_classes):
                if c == background_label_id: # index为零的是背景
                    continue
                c_confs = mbox_conf[i, :, c]
                c_confs_m = c_confs > confidence_threshold
                if len(c_confs[c_confs_m]) > 0:
                    # 取出得分高于confidence_threshold的框
                    boxes_to_process = decode_bbox[c_confs_m]
                    confs_to_process = c_confs[c_confs_m]
                    # 进行iou的非极大抑制
                    feed_dict = {self.boxes: boxes_to_process,
                                 self.scores: confs_to_process}
                    idx = self.sess.run(self.nms, feed_dict=feed_dict)
                    # 取出在非极大抑制中效果较好的内容
                    good_boxes = boxes_to_process[idx]
                    confs = confs_to_process[idx][:, None]  # 变成行列的形式
                    # 将label、置信度、框的位置进行堆叠
                    labels = c * np.ones((len(idx), 1))  # c 是类别对应的数字
                    c_pred = np.concatenate((labels, confs, good_boxes),
                                            axis=1)
                    # 添加进result里
                    results[-1].extend(c_pred)
            if len(results[-1]) > 0:
                # 按照置信度进行排序
                results[-1] = np.array(results[-1])
                argsort = np.argsort(results[-1][:, 1])[::-1]   # 按照概率排序
                results[-1] = results[-1][argsort]
                # 选出置信度最大的keep_top_k个
                results[-1] = results[-1][:keep_top_k]
        return results


4.3 解码

'''
1. 先验框左上角和右下角坐标转化为中心点坐标和宽与高。
2. 预测框的中心点坐标、宽与高。
3. 获取预测框的左上角与右下角。

'''
def decode_boxes(self, mbox_loc, mbox_priorbox, variances):
        # 1 获得先验框的宽与高  x1,y1,x2,y2 --> cx,cy,h,w
        prior_width = mbox_priorbox[:, 2] - mbox_priorbox[:, 0]
        prior_height = mbox_priorbox[:, 3] - mbox_priorbox[:, 1]
        # 获得先验框的中心点
        prior_center_x = 0.5 * (mbox_priorbox[:, 2] + mbox_priorbox[:, 0])
        prior_center_y = 0.5 * (mbox_priorbox[:, 3] + mbox_priorbox[:, 1])

        # 2 预测框距离先验框中心的xy轴偏移情况
        decode_bbox_center_x = mbox_loc[:, 0] * prior_width * variances[:, 0]
        decode_bbox_center_x += prior_center_x
        decode_bbox_center_y = mbox_loc[:, 1] * prior_height * variances[:, 1]
        decode_bbox_center_y += prior_center_y
        
        # 预测框的宽与高的求取
        decode_bbox_width = np.exp(mbox_loc[:, 2] * variances[:, 2])
        decode_bbox_width *= prior_width
        decode_bbox_height = np.exp(mbox_loc[:, 3] * variances[:, 3])
        decode_bbox_height *= prior_height

        # 3 获取预测框的左上角与右下角
        decode_bbox_xmin = decode_bbox_center_x - 0.5 * decode_bbox_width
        decode_bbox_ymin = decode_bbox_center_y - 0.5 * decode_bbox_height
        decode_bbox_xmax = decode_bbox_center_x + 0.5 * decode_bbox_width
        decode_bbox_ymax = decode_bbox_center_y + 0.5 * decode_bbox_height

        # 预测框的左上角与右下角进行堆叠
        decode_bbox = np.concatenate((decode_bbox_xmin[:, None],
                                      decode_bbox_ymin[:, None],
                                      decode_bbox_xmax[:, None],
                                      decode_bbox_ymax[:, None]), axis=-1)
        # 防止超出0与1
        decode_bbox = np.minimum(np.maximum(decode_bbox, 0.0), 1.0)
        return decode_bbox

你可能感兴趣的:(SSD要点回顾)