5种模型构建解决回归问题(california房价预测)

用tf.keras构建模型处理房价预测问题

    • 1.引入所需要的包
    • 2.从sklearn.datasets中调用数据集
      • 输出
    • 3.对数据集进行train,valid,test的划分
      • 输出
    • 4.对数据进行标准归一化
    • 5.模型的构建及训练
      • 1.一般单层级网络模型
        • 1.构建模型
        • 2.模型训练
        • 3.绘制训练曲线
        • 4.模型评估
      • 2.用函数式api构建wide&deep模型
        • 1.构建模型
        • 2.训练模型
        • 3.绘制训练曲线
        • 4.模型评估
      • 3.用子类api实现wide&deep模型训练
        • 1.构建模型
        • 2.训练模型
        • 3.绘制训练曲线
        • 4.模型评估
      • 4.wide&deep实现多输入
        • 1.模型构建
        • 2.将多组数据传入fit,进行训练
        • 3.绘制训练曲线
        • 4.模型评估
      • 5.wide&deep实现多输入和多输出
        • 1.模型构建
        • 2.进行训练
        • 3.打印训练曲线
        • 4.模型评估

1.引入所需要的包

import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf

from tensorflow import keras

print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
    print(module.__name__, module.__version__)
    

2.从sklearn.datasets中调用数据集

from sklearn.datasets import fetch_california_housing

housing = fetch_california_housing()
print(housing.DESCR)
print(housing.data.shape)
print(housing.target.shape)

输出

5种模型构建解决回归问题(california房价预测)_第1张图片

3.对数据集进行train,valid,test的划分

from sklearn.model_selection import train_test_split

x_train_all, x_test, y_train_all, y_test = train_test_split(
    housing.data, housing.target, random_state = 7)
x_train, x_valid, y_train, y_valid = train_test_split(
    x_train_all, y_train_all, random_state = 11)
print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape

输出

(11610, 8) (11610,)
(3870, 8) (3870,)
(5160, 8) (5160,)

4.对数据进行标准归一化

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_valid_scaled = scaler.transform(x_valid)
x_test_scaled = scaler.transform(x_test)

5.模型的构建及训练

1.一般单层级网络模型

1.构建模型

model = keras.models.Sequential([
    keras.layers.Dense(30, activation='relu',
                       input_shape=x_train.shape[1:]),
    keras.layers.Dense(1),
])
model.summary()
model.compile(loss="mean_squared_error", optimizer="sgd")
callbacks = [keras.callbacks.EarlyStopping(
    patience=5, min_delta=1e-2)]

5种模型构建解决回归问题(california房价预测)_第2张图片

2.模型训练

history = model.fit(x_train_scaled, y_train,
                    validation_data = (x_valid_scaled, y_valid),
                    epochs = 100,
                    callbacks = callbacks)

3.绘制训练曲线

def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8, 5))
    plt.grid(True)
    plt.gca().set_ylim(0, 1)
    plt.show()
plot_learning_curves(history)

5种模型构建解决回归问题(california房价预测)_第3张图片

4.模型评估

在这里插入图片描述

model.evaluate(x_test_scaled, y_test)

2.用函数式api构建wide&deep模型

1.构建模型

# 函数式API 功能API
input = keras.layers.Input(shape=x_train.shape[1:])
hidden1 = keras.layers.Dense(30, activation='relu')(input)
hidden2 = keras.layers.Dense(30, activation='relu')(hidden1)
# 复合函数: f(x) = h(g(x))

concat = keras.layers.concatenate([input, hidden2])
output = keras.layers.Dense(1)(concat)

model = keras.models.Model(inputs = [input],
                           outputs = [output])

model.summary()
model.compile(loss="mean_squared_error", optimizer="sgd")
callbacks = [keras.callbacks.EarlyStopping(
    patience=5, min_delta=1e-2)]

5种模型构建解决回归问题(california房价预测)_第4张图片

2.训练模型

history = model.fit(x_train_scaled, y_train,
                    validation_data = (x_valid_scaled, y_valid),
                    epochs = 100,
                    callbacks = callbacks)

3.绘制训练曲线

def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8, 5))
    plt.grid(True)
    plt.gca().set_ylim(0, 1)
    plt.show()
plot_learning_curves(history)

5种模型构建解决回归问题(california房价预测)_第5张图片

4.模型评估

model.evaluate(x_test_scaled, y_test)

在这里插入图片描述

3.用子类api实现wide&deep模型训练

1.构建模型

# 子类API
class WideDeepModel(keras.models.Model):
    def __init__(self):
        super(WideDeepModel, self).__init__()
        """定义模型的层次"""
        self.hidden1_layer = keras.layers.Dense(30, activation='relu')
        self.hidden2_layer = keras.layers.Dense(30, activation='relu')
        self.output_layer = keras.layers.Dense(1)
    
    def call(self, input):
        """完成模型的正向计算"""
        hidden1 = self.hidden1_layer(input)
        hidden2 = self.hidden2_layer(hidden1)
        concat = keras.layers.concatenate([input, hidden2])
        output = self.output_layer(concat)
        return output
# model = WideDeepModel()
model = keras.models.Sequential([
    WideDeepModel(),
])

model.build(input_shape=(None, 8))
        
model.summary()
model.compile(loss="mean_squared_error", optimizer="sgd")
callbacks = [keras.callbacks.EarlyStopping(
    patience=5, min_delta=1e-2)]

5种模型构建解决回归问题(california房价预测)_第6张图片

2.训练模型

history = model.fit(x_train_scaled, y_train,
                    validation_data = (x_valid_scaled, y_valid),
                    epochs = 1,
                    callbacks = callbacks)

3.绘制训练曲线

def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8, 5))
    plt.grid(True)
    plt.gca().set_ylim(0, 1)
    plt.show()
plot_learning_curves(history)

5种模型构建解决回归问题(california房价预测)_第7张图片

4.模型评估

model.evaluate(x_test_scaled, y_test)

在这里插入图片描述

4.wide&deep实现多输入

1.模型构建

# 多输入
input_wide = keras.layers.Input(shape=[5])
input_deep = keras.layers.Input(shape=[6])
hidden1 = keras.layers.Dense(30, activation='relu')(input_deep)
hidden2 = keras.layers.Dense(30, activation='relu')(hidden1)
concat = keras.layers.concatenate([input_wide, hidden2])
output = keras.layers.Dense(1)(concat)
model = keras.models.Model(inputs = [input_wide, input_deep],
                           outputs = [output])
        

model.compile(loss="mean_squared_error", optimizer="sgd")
callbacks = [keras.callbacks.EarlyStopping(
    patience=5, min_delta=1e-2)]
model.summary()

5种模型构建解决回归问题(california房价预测)_第8张图片

2.将多组数据传入fit,进行训练

x_train_scaled_wide = x_train_scaled[:, :5]
x_train_scaled_deep = x_train_scaled[:, 2:]
x_valid_scaled_wide = x_valid_scaled[:, :5]
x_valid_scaled_deep = x_valid_scaled[:, 2:]
x_test_scaled_wide = x_test_scaled[:, :5]
x_test_scaled_deep = x_test_scaled[:, 2:]

history = model.fit([x_train_scaled_wide, x_train_scaled_deep],
                    y_train,
                    validation_data = (
                        [x_valid_scaled_wide, x_valid_scaled_deep],
                        y_valid),
                    epochs = 100,
                    callbacks = callbacks)

3.绘制训练曲线

def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8, 5))
    plt.grid(True)
    plt.gca().set_ylim(0, 1)
    plt.show()
plot_learning_curves(history)

5种模型构建解决回归问题(california房价预测)_第9张图片

4.模型评估

model.evaluate([x_test_scaled_wide, x_test_scaled_deep], y_test)

在这里插入图片描述

5.wide&deep实现多输入和多输出

1.模型构建

# 多输出
input_wide = keras.layers.Input(shape=[5])
input_deep = keras.layers.Input(shape=[6])
hidden1 = keras.layers.Dense(30, activation='relu')(input_deep)
hidden2 = keras.layers.Dense(30, activation='relu')(hidden1)
concat = keras.layers.concatenate([input_wide, hidden2])
output = keras.layers.Dense(1)(concat)
output2 = keras.layers.Dense(1)(hidden2)
model = keras.models.Model(inputs = [input_wide, input_deep],
                           outputs = [output, output2])#固化模型
        

model.compile(loss="mean_squared_error", optimizer="sgd")
callbacks = [keras.callbacks.EarlyStopping(
    patience=5, min_delta=1e-2)]
model.summary()

5种模型构建解决回归问题(california房价预测)_第10张图片

2.进行训练

x_train_scaled_wide = x_train_scaled[:, :5]
x_train_scaled_deep = x_train_scaled[:, 2:]
x_valid_scaled_wide = x_valid_scaled[:, :5]
x_valid_scaled_deep = x_valid_scaled[:, 2:]
x_test_scaled_wide = x_test_scaled[:, :5]
x_test_scaled_deep = x_test_scaled[:, 2:]

history = model.fit([x_train_scaled_wide, x_train_scaled_deep],
                    [y_train, y_train],
                    validation_data = (
                        [x_valid_scaled_wide, x_valid_scaled_deep],
                        [y_valid, y_valid]),
                    epochs = 100,
                    callbacks = callbacks)

3.打印训练曲线

def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8, 5))
    plt.grid(True)
    plt.gca().set_ylim(0, 1)
    plt.show()
plot_learning_curves(history)

5种模型构建解决回归问题(california房价预测)_第11张图片

4.模型评估

model.evaluate([x_test_scaled_wide, x_test_scaled_deep],
               [y_test, y_test])

在这里插入图片描述

你可能感兴趣的:(tensorflow2.0,tensorflow,深度学习,机器学习,神经网络,dnn)