Deep Neural Network

Deep Neural Network

仅用于自己学习使用

依赖的库

import numpy as np
import h5py
import matplotlib.pyplot as plt
from pyrsistent import b
from regex import B
import testCases #参见资料包,或者在文章底部copy
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward #参见资料包
import lr_utils #参见资料包,或者在文章底部copy

初始化参数

def initialize_parameters_deep(layers_dims):

    np.random.seed(3)
    parameters = {}
    L = len(layers_dims)
    
    for l in range(1,L):

        parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))

    return parameters

前向传播

def linear_activation_forward(A_prev,W,b,activation):
    Z = np.dot(W,A_prev) + b
    if activation == "sigmoid":
        A, Z = sigmoid(Z)
    elif activation == "relu":
        A, Z = relu(Z)
    
    assert(A.shape == (W.shape[0],A_prev.shape[1]))
    cache = (A_prev, W, b,Z) # (A_prev, W, b,Z)
    
    return A,cache

 
def L_model_forward(X,parameters):

    caches = []    #[(X, W1, b1,Z1),(A1, W2, b2,Z2).....]
    A = X
    L = len(parameters) // 2
    for l in range(1,L):
        A_prev = A 
        A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu")
        caches.append(cache) 
    
    AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid")
    caches.append(cache)
    
    assert(AL.shape == (1,X.shape[1]))
    
    return AL,caches

成本函数

def compute_cost(AL,Y):

    m = Y.shape[1]
    cost = -np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1 - AL), 1 - Y)) / m
        
    cost = np.squeeze(cost)
    assert(cost.shape == ())

    return cost

Deep Neural Network_第1张图片

反向传播

def linear_activation_backward(dA,cache,activation="relu"):  #cache2 (A1,W2,b2,Z2)
    A_prev, W, b, Z = cache
    m = A_prev.shape[1]
    if activation == "relu":
        dZ = relu_backward(dA, Z)   
        dW = np.dot(dZ, A_prev.T) / m
        db = np.sum(dZ, axis=1, keepdims=True) / m
        dA_prev = np.dot(W.T, dZ)
      
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, Z)  
        dW = np.dot(dZ, A_prev.T) / m
        db = np.sum(dZ, axis=1, keepdims=True) / m
        dA_prev = np.dot(W.T, dZ)
 
     return dA_prev,dW,db


def L_model_backward(AL,Y,caches):

    grads = {}
    L = len(caches)   
    m = AL.shape[1]
    Y = Y.reshape(AL.shape)
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    
    current_cache = caches[L-1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")
    
    for l in reversed(range(L-1)):  #reversed 反转迭代器
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
    
    return grads

更新参数

def update_parameters(parameters, grads, learning_rate):

    L = len(parameters) // 2 #整除
    for l in range(1,L):
        parameters["W" + str(l)] = parameters["W" + str(l)] - learning_rate * grads["dW" + str(l)]
        parameters["b" + str(l)] = parameters["b" + str(l)] - learning_rate * grads["db" + str(l)]
        
    return parameters

多层神经网络

def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False,isPlot=True):

    np.random.seed(1)
    costs = []
    
    parameters = initialize_parameters_deep(layers_dims)
    
    for i in range(0,num_iterations):
        AL , caches = L_model_forward(X,parameters)
        
        cost = compute_cost(AL,Y)
        
        grads = L_model_backward(AL,Y,caches)
        
        parameters = update_parameters(parameters,grads,learning_rate)
        
        #打印成本值,如果print_cost=False则忽略
        if i % 100 == 0:
            #记录成本
            costs.append(cost)
            #是否打印成本值
            if print_cost:
                print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost))
    #迭代完成,根据条件绘制图
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    return parameters

def predict(X, y, parameters):

    m = X.shape[1]
    n = len(parameters) // 2 # 神经网络的层数
    p = np.zeros((1,m))
    
    #根据参数前向传播
    probas, caches = L_model_forward(X, parameters)
    
    for i in range(0, probas.shape[1]):
        if probas[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0
    
    print("准确度为: "  + str(float(np.sum((p == y))/m)))
        
    return p

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()

train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T 
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y


layers_dims = [12288, 20, 7, 5,1] #  5-layer model
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True,isPlot=True)

pred_train = predict(train_x, train_y, parameters) #训练集
pred_test = predict(test_x, test_y, parameters) #测试集

参考:https://blog.csdn.net/u013733326/article/details/79767169

你可能感兴趣的:(深度学习,机器学习,神经网络)