- 【西瓜书】机器学习(周志华)学习问题记录
_linyu__
基础知识机器学习周志华西瓜书
简述西瓜书的鼎鼎大名早有耳闻,于是毫无疑问买来入门。写此文章的时候刚要做完第二章的练习题。在看的时候有一些感慨:需要一定的数理基础,尤其是概率论的内容。但是如果没学过也不建议直接去啃概率论,只要把相关的部分看看即可。周老师默认我们能力很强,所以有些地方说得不够详细,仅靠此书无法理解,需要自己另行查阅。有一些疑似谬误的地方,但是我自己能力较差,又苦于没有人佐证,所以并不敢说周老师一定错了。在看的过程
- 机器学习西瓜书笔记——机器学习基本术语,模型性能指标【一】
Code思铮
机器学习笔记人工智能
西瓜书第一,二章笔记datawhale吃瓜教程task1学习笔记第一章第一张主要介绍了一些机器学习研究内容和基本术语,以及发展现状。基本术语由于有些术语过于基础,在此不做赘述大家可以去读西瓜书。1、分类任务:若模型的预测值是离散的,如“好瓜”,“坏瓜”,这是分类任务。在二分类任务中有两个标签(label)一个是正类,一个是反类2、回归任务:若模型的预测值是连续的,如“西瓜的成熟度是0.99“那么这
- 西瓜书--无监督学习(聚类)
oisflo
学习聚类机器学习
无监督学习无监督学习无监督学习前言一、无监督学习是什么?1)机器学习的分类2)解释(图文结合)3)区别二、无监督学习应用范围三、无标注数据的结构1)用处四、聚类1)聚类的含义:2)怎么判断是好的聚类:原则:3)聚类的分类:1)软聚类(softclustering)vs.硬聚(hardclustering)2)层次聚类vs.非层次聚类(图)+举例3)==算法==:凝聚式层次聚类(步骤+图文显示)分裂
- 全局最小值、局部最小值以及如何跳出局部最小值
keep_humble
机器学习机器学习深度学习
前段时间在看深度学习的内容,对于全局最小值和局部最小值这两个概念之前理解的不太深入,总是容易混淆,看了西瓜书之后明白了,特此总结一下,加深印象。1.全局、局部最小值的概念局部最小值是在某一区域内,函数的取值达到了最小,但是如果将这个区域扩展到定义域上来,那么这个局部最小值就不一定是最小的。全局最小值,是在定义域内,函数值最小。全局最小一定是局部最小值,但是反之不一定成立。图中的点是一个局部最小值点
- 机器学习(周志华西瓜书)
华华不在
机器学习机器学习人工智能神经网络
注:此文仅作为个人学习笔记。第一章绪论1.机器学习(machineLearning):致力于研究如何通过计算的手段,利用经验来改善系统自身性能;学习算法(learningalgorithm):关于在计算机上从数据中产生“模型”(model)的算法;2.(基本术语解释)数据集(dataset)示例(instance)/样本(sample):数据集中每条记录是关于一个事件获对象的描述;属性(attri
- 西瓜书【机器学习(周志华)】目录
随机森林404
机器学习机器学习
第一部分:基础概念机器学习概述1.1人工智能与机器学习1.2机器学习分类1.3机器学习应用1.4机器学习常用术语解释模型的评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4偏差与方差第二部分:核心算法线性模型3.1什么是回归3.2一元线性回归3.3多元线性回归3.4对数几率回归3.5线性判别分析(LDA)3.6多分类学习3.7类别不平衡问题决策树4.1决策树概述4.2ID3算法4.
- 深度学习如何入门?
深度学习机器学习
深度学习python机器学习图神经网络深度学习算法程序员pytorch
有人说要学深度学习,机器学习是基础;有人说,要先学数学,数学基础很重要;也有人说,不学Python寸步难行;还有人说,不看论文怎么行?又有人说,我这有两本秘籍,你拿回去好好研究,将来必成大器!从理论基础开始稳扎稳打地往上学,自然是老铁没毛病的,但是也得看时间要求,以及投产比。尤其是在一开始的时候,心气儿正足,却在西瓜书南瓜书花书等经典大部头、高数、概率、python甚至c++上耗尽心力,到头来极容
- 基于鸢尾花数据和手写数字,决策树,随机森林,voting,bagging法的比较
zaprily
实验记录决策树pythonsklearn
四种方法的具体的原理可以见博文和西瓜书先上代码根据结果分析鸢尾花数据#evaluatebaggingalgorithmforclassificationfromnumpyimportmeanfromnumpyimportstdfromsklearn.datasetsimportmake_classificationfromsklearn.model_selectionimportcross_val
- 我的机器学习学习之路
花果山-马大帅
机器学习机器学习人工智能python算法scikit-learn
学习python的初衷•hi,今天给朋友们分享一下我是怎么从0基础开始学习机器学习的。•我是2023年9月开始下定决心要学python的,目的有两个,一是为了提升自己的技能和价值,二是将所学的知识应用到工作中去,提升工作效率。我的背景与书籍选择•我是上班族,2023年非全日制硕士研究生毕业。•我的导师是数学博士,在导师的推荐下买了周老师的《机器学习(西瓜书)》和李航老师的《统计学习方法》,这2本书
- 人工智能(11)——————计算机视觉
長安一片月
人工智能人工智能计算机视觉
目录声明正文1、简介2、步骤1)图像分类2)目标检测(目标定位)3)目标跟踪4)图像分割普通分割语义分割实例分割5)图像生成3、总结声明以下内容均来自B站吴恩达教授的视频以及西瓜书和众多前辈的学习成果总结,仅记录本人的大模型学习过程,如有侵权立马删除。言论仅代表自身理解,如有错误还请指正。正文1、简介我们先来看看百度百科里对计算机视觉的介绍:计算机视觉是一门研究如何使机器“看”的科学,更进一步的说
- 人工智能(10)——————自然语言处理
長安一片月
人工智能人工智能自然语言处理学习transformer
声明以下内容均来自B站吴恩达教授的视频以及西瓜书和众多前辈的学习成果总结,仅记录本人的大模型学习过程,如有侵权立马删除。言论仅代表自身理解,如有错误还请指正。正文简介其实在现在的人工智能领域,很多东西都是相互关联,相互促进的。比如机器学习可以引入到自然语言处理,计算机视觉等多个类别当中,而自然语言处理中特有的seq2seq方法也可以用于机器学习当中。但是根本上这些类别都存在自己独有之处。自然语言处
- 从零开始学AI——1
人工智能
前言最近总算有想法回到学习上来,这次就拿AI开刀吧。本系列叫从零开始学AI不是骗人的,我对AI的了解几乎就是道听途说,所以起了这么一个标题,希望学完从0变1(?此外,我应该不会特别关注代码实现上的内容,因为我对python也是一窍不通。本笔记为学习周志华老师《机器学习》(西瓜书)的个人学习记录,内容基于个人理解进行整理和再阐述。由于理解可能存在偏差,欢迎指正。引用模块说明:在笔记中,我会使用引用模
- 【西瓜书《机器学习》七八九章内容通俗理解】
游戏乐趣
人工智能机器学习人工智能
第七章:贝叶斯分类器7.1贝叶斯决策论基础核心概念:贝叶斯分类器是基于概率来做分类决策的。简单来说,就是根据已知的一些条件,去计算每个类别出现的概率,然后选择概率最大的那个类别作为分类结果。就好比你在猜一个盒子里装的是红球还是蓝球,你可以根据之前从这个盒子里摸球的一些经验(比如摸出红球的次数多),来判断这次盒子里更有可能是红球还是蓝球。例子:假如你要判断一幅图片是猫还是狗。你知道在所有的图片数据里
- 周志华机器学习西瓜书 第五章 神经网络-学习笔记(超详细)
Sodas(填坑中....)
周志华西瓜书——详细笔记附例题图解机器学习神经网络学习人工智能数据挖掘算法
在机器学习中,神经网络一般指的是"神经网络学习",是机器学习与神经网络两个学科的交叉部分。所谓神经网络,目前用的最广泛的一个定义是"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体做出交互反应"。神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助
- 《西瓜书》大白话思想总结-第三章
小溪子子
西瓜书概率论机器学习分类
第三章3.1+3.2分类和回归是监督式学习,都是根据数据,分析特征,作出预测,只是预测的值是离散的叫分类,连续的叫回归。为什么叫线性回归呢?因为线性就可以看成是直线,直线当然是连续的。而所给的直线就是根据离散点拟合出来的线,其本质就是一种预测。那么根据离散点的特征,给出了预测方程的这个直线,就符合回归的定义。因此,这就叫作线性回归。(个人理解,不一定对)这个拟合直线的方程,或者叫预测的函数,各个自
- 周工作计划2019-03-25
MikeShine
很久没有写工作计划了。之前一个星期生了病,很难受。上个星期基本上什么都没有干。但是好的一点是,西瓜书基本都看完了。本周工作计划:机器学习分享活动(关于决策树的分享)回看一下西瓜书的东西,每一章把开头总结写一下。老师没有给具体的任务,留了再说吧。
- 机器学习(西瓜书)学习笔记导览
盛寒
机器学习西瓜书学习机器学习人工智能
本篇文章会持续更新直到更新完毕,关注博主不迷路~(如果没有超链接,表示还没有更新到)第一章绪论1.1引言1.2基本术语1.3假设空间1.4归纳偏好第二章模型评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4比较检验2.5偏差与方差第三章线性模型3.1基本形式3.2线性回归3.3对数几率回归3.4线性判别分析3.5多分类学习3.6类别不平衡问题第四章决策树4.1基本流程4.2划分选择
- 机器学习LDA线性判别器代码实现
Longlongaaago
机器学习LDA线性判别分析代码实现
机器学习LDA线性判别器代码实现西瓜书P60线性判别器LDA代码实现:importnumpyasnpimportmatplotlib.pyplotaspltdefload_data(file_name):'''数据导入函数:paramfile_name:(string)训练数据位置:return:feature_data(mat)特征lable_data(mat)标签'''fr=open(file
- 西瓜书-机器学习5.4 全局最小与局部极小
lestat_black
西瓜书机器学习
两种“最优”:“局部极小”(localminimum)和"全局最小"(globalminimum)对和,若存在使得多组不同参数值初始化多个神经网络使用“模拟退火”:以一定的概率接受比当前解更差的结果,有助于“跳出”局部极小使用随机梯度下降遗传算法(geneticalgorithms)[Goldberg,1989]也常用来训练神经网络以上用于跳出局部极小的技术大多是启发式,理论上商缺乏保障。Gold
- 2019-05-14《西瓜书》难啃
杨熊猫Yang
周志华老师的《西瓜书:机器学习》这周看完1~10章锻炼:太极云手、100手/组,3组虎刨功(简)、100个/组,2组
- 机器学习——集成学习
三三木木七
机器学习集成学习人工智能
参考:ysu老师课件+西瓜书+期末复习笔记1.集成学习的基本概念集成学习(ensemblelearing)通过构建并结合多个学习器来完成学习任务。有时也被称为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等。理解:集成学习是一种机器学习方法,其核心思想是将多个学习器(弱学习器)集成在一起,以达到比单个学习器更好的性能
- 西瓜书学习笔记——低维嵌入(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍低维嵌入(Low-DimensionalEmbedding)是一种降低高维数据维度的技术,目的是在保留数据特征的同时减少数据的复杂性。这种技术常用于可视化、特征学习、以及数据压缩等领域。低维嵌入的目标是将高维数据映射到一个低维空间,以便更好地理解和可视化数据。在kkk近邻学习中,随着数据维度的增加,样本之间的距离变得更加稀疏,导致KNN算法性能下降。这是因为在高维空
- 西瓜书学习笔记——核化线性降维(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍核化线性降维是一种使用核方法(KernelMethods)来进行降维的技术。在传统的线性降维方法中,例如主成分分析(PCA)和线性判别分析(LDA),数据被映射到一个低维线性子空间中。而核化线性降维则通过使用核技巧,将数据映射到一个非线性的低维空间中。核技巧的核心思想是通过一个非线性映射将原始数据转换到一个高维的特征空间,然后在该特征空间中应用线性降维方法。这种映射
- 西瓜书学习笔记——k近邻学习(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习
文章目录算法介绍实验分析算法介绍K最近邻(K-NearestNeighbors,KNN)是一种常用的监督学习算法,用于分类和回归任务。该算法基于一个简单的思想:如果一个样本在特征空间中的kkk个最近邻居中的大多数属于某个类别,那么该样本很可能属于这个类别。KNN算法不涉及模型的训练阶段,而是在预测时进行计算。以下是KNN算法的基本步骤:选择K值:首先,确定用于决策的邻居数量K。K的选择会影响算法的
- 西瓜书学习笔记——主成分分析(公式推导+举例应用)
Nie同学
机器学习学习笔记机器学习降维
文章目录算法介绍实验分析算法介绍主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术,用于在高维数据中发现最重要的特征或主成分。PCA的目标是通过线性变换将原始数据转换成一组新的特征,这些新特征被称为主成分,它们是原始特征的线性组合。对于一个正交属性空间(各个属性之间是线性无关的)中的样本点,存在以下两个性质的超平面可对所有样本点进行恰当的表达:最近重构性
- 朴素贝叶斯分类算法
三三木木七
#机器学习机器学习人工智能sklearn
本文介绍了朴素贝叶斯分类算法,标记后的话一般是自己简要总结的,是比较通俗易懂的,也就是必看的。参考:西瓜书,ysu老师课件【摘要】1.分类算法:分类算法的内容是根据给定特征,求出它所属类别。2.先验概率:就是根据以往的数据分析所得到的概率。后验概率:是得到信息之后重新加以修正得到的概率。3.贝叶斯决策:贝叶斯决策理论中,我们希望选择那个最小化总体期望损失的决策。决策损失的期望值通过对所有可能状态的
- 决策树的相关知识点
三三木木七
#机器学习决策树算法机器学习
参考:ysu老师课件+西瓜书1.决策树的基本概念【决策树】:决策树是一种描述对样本数据进行分类的树形结构模型,由节点和有向边组成。其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。理解:它是一个树状结构,其中每个节点代表一个特征属性的判断,每个分支代表这个判断的结果,而每个叶节点(叶子)代表一种类别或回归值。关于决策树要掌握的概念:根节点(Roo
- 西瓜书学习笔记——层次聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍层次聚类是一种将数据集划分为层次结构的聚类方法。它主要有两种策略:自底向上和自顶向下。其中AGNES算法是一种自底向上聚类算法,用于将数据集划分为层次结构的聚类。算法的基本思想是从每个数据点开始,逐步合并最相似的簇,直到形成一个包含所有数据点的大簇。这个过程被反复执行,构建出一个层次化的聚类结构。这其中的关键就是如何计算聚类簇之间的距离。但实际上,每个簇都是一个集合
- 西瓜书学习笔记——密度聚类(公式推导+举例应用)
Nie同学
机器学习学习笔记聚类
文章目录算法介绍实验分析算法介绍密度聚类是一种无监督学习的聚类方法,其目标是根据数据点的密度分布将它们分组成不同的簇。与传统的基于距离的聚类方法(如K均值)不同,密度聚类方法不需要预先指定簇的数量,而是通过发现数据点周围的密度高度来确定簇的形状和大小。我们基于DBSCAN算法来实现密度聚类。DBSCAN是基于一组邻域参数(ϵ,MinPts)(\epsilon,MinPts)(ϵ,MinPts)来刻
- 【机器学习·西瓜书学习笔记·线性模型】线性回归——最小二乘法(least square method)
慈善区一姐
机器学习学习线性回归
线性模型的基本形式给定由个属性描述的实例,其中是在第个属性上的取值,线性模型(linearmodel)试图学得一个通过属性的线性组合来进行预测的函数,即一般用向量形式写成:和确定后,模型就得以确定参数查阅表把数据集表示为一个m*(d+1)大小的矩阵,其中每行对应于一个实例,每行前d个元素对应于实例的d个属性值,最后一个元素恒置于1,即(一)均方误差(meansquarederror)基于欧几里得距
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p