【项目实战二】基于模板匹配和形态学操作的信用卡卡号识别(OpenCV+Python)

前言:信用卡卡号识别技术的发展有利于提高银行系统的业务水平和办事效率。相信此次通过学习使用OpenCV中的图像处理方法来实现信用卡卡号识别的项目,能让大家清楚地了解图像处理技术的一般方法与步骤以及如何使用OpenCV库。

1、设计思路

        不同银行发行的信用卡,其卡号中的数字外观形状是有点区别的,由于小编是通过模板匹配的方法完成信用卡卡号识别的,既然是模板匹配,则必须有一套与信用卡中外形一模一样的数字模板,通过比对信用卡中的数字和模板中数字的差别来确定识别结果,模板图像和信用卡图像分布如图1和图2所示。

【项目实战二】基于模板匹配和形态学操作的信用卡卡号识别(OpenCV+Python)_第1张图片

图1

【项目实战二】基于模板匹配和形态学操作的信用卡卡号识别(OpenCV+Python)_第2张图片

图2       

         在进行模板匹配之前,必须通过图像处理方法,比如形态学等,先从信用卡图像中找到本次项目的感兴趣域——即卡号所在区域,并且将该区域分割出来,然后提取出该区域中的数字分别与模板中的10个数字进行比对,认为数字与模板中匹配得分最高的数字相同。

2、代码实现

        项目实现包括main.py和myutils.py两部分代码,要想观察实验结果运行main.py就行,myutils.py中主要包含轮廓排序方法和resize方法,main.py中会调用myutils.py模块中的函数。

main.py文件中的代码如下:

# 导入工具包
from imutils import contours
import numpy as np
import cv2
import myutils


# 指定信用卡类型
FIRST_NUMBER = {
    "3": "American Express",
    "4": "Visa",
    "5": "MasterCard",
    "6": "Discover Card"
}


# 绘图函数

def cv_show(name, img1):
    cv2.imshow(name, img1)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


# 读取模板
img = cv2.imread("template.png")
cv_show('img', img)

# 转化为灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show('ref', ref)

# 转化为二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
cv_show('ref', ref)

# 计算轮廓
refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
#print(np.size(refCnts))返回值refcnts返回的是10组轮廓及其每个轮廓所有组成点的坐标
cv2.drawContours(img, refCnts, -1, (0, 0, 255), 3)
cv_show('img', img)
print(np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0]
digits = {}

# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
    (x, y, w, h) = cv2.boundingRect(c)
    roi = ref[y:y + h, x:x + w]
    roi = cv2.resize(roi, (57, 88))
    digits[i] = roi

# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))

# 预处理
image = cv2.imread('object.png')
cv_show('image', image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray', gray)

# 礼貌操作,突出高亮
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat', tophat)
gradx = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
gradx = np.absolute(gradx)
(minVal, maxVal) = (np.min(gradx), np.max(gradx))
gradx = (255 * ((gradx - minVal) / (maxVal - minVal)))
gradx = gradx.astype("uint8")
print(np.array(gradx).shape)
cv_show('gradx', gradx)

# 闭操作
gradx = cv2.morphologyEx(gradx, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradx', gradx)
thresh = cv2.threshold(gradx, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show('thresh', thresh)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
cv_show('thresh', thresh)

# 计算轮廓
threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img, cnts, -1, (0, 0, 255), 3)
cv_show('img', cur_img)
locs = []

# 遍历轮廓
for (i, c) in enumerate(cnts):
    # 计算矩形
    (x, y, w, h) = cv2.boundingRect(c)
    ar = w / float(h)
    if ar > 2.5 and ar < 4.0:
        if (w > 40 and w < 55) and (h > 10 and h < 20):
            locs.append((x, y, w, h))
# 排序
locs = sorted(locs, key=lambda x: x[0])
output = []

# 遍历数字
for (i, (gx, gy, gw, gh)) in enumerate(locs):
    groupOutput = []
    group = gray[gy - 5:gy + gh + 5, gx - 5:gx + gw + 5]
    cv_show('group', group)

    # 预处理
    group = cv2.threshold(group, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
    cv_show('group', group)
    digitCnts, hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    digitCnts = contours.sort_contours(digitCnts, method="left-to-right")[0]

    # 计算每一组中的每一个数值
    for c in digitCnts:
        (x, y, w, h) = cv2.boundingRect(c)
        roi = group[y:y + h, x:x + w]
        roi = cv2.resize(roi, (57, 88))
        cv_show('roi', roi)
        scores = []

        for (digit, digitROI) in digits.items():
            # 模板匹配
            result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF)
            (_, score, _, _) = cv2.minMaxLoc(result)
            scores.append(score)

        groupOutput.append(str(np.argmax(scores)))
    cv2.rectangle(image, (gx - 5, gy - 5), (gx + gw + 5, gy + gh + 5), (0, 0, 255), 1)
    cv2.putText(image, "".join(groupOutput), (gx, gy - 15), cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, 0.65, (0, 0, 255), 2)
    output.extend(groupOutput)

print("Credit Card Type:{}".format(FIRST_NUMBER[output[0]]))
print("Credit Card # : {}".format("".join(output)))
cv2.imshow("image", image)
cv2.waitKey(0)

myutils.py中的代码如下:

import cv2


def sort_contours(cnts, method="left-to-right"):
    reverse = False
    i = 0
    if method == "right-to-left" or method == "bottom-to-top":
        reverse = True
    if method == "top-to-bottom" or method == "bottom-to-top":
        i = 1
    boundingBoxes = [cv2.boundingRect(c) for c in cnts]
    (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes), key=lambda b: b[1][i], reverse=reverse))
    return cnts, boundingBoxes


def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
    dim = None
    (h, w) = image.shape[:2]
    if width is None and height is None:
        return image
    if width is None:
        r = height/float(h)
        dim = (int(w*r), height)
    else:
        r = width/float(w)
        dim = (width, int(h*r))
    resized = cv2.resize(image, dim, interpolation=inter)
    return resized

代码中出现的template.png就是图1,object.png就是图2。信用卡卡号识别项目的最终识别结果如图3和图4所示。

【项目实战二】基于模板匹配和形态学操作的信用卡卡号识别(OpenCV+Python)_第3张图片

图3

【项目实战二】基于模板匹配和形态学操作的信用卡卡号识别(OpenCV+Python)_第4张图片

 图4

 

你可能感兴趣的:(#,传统图像处理,opencv,图像处理,python)