XGBoost全名叫(eXtreme Gradient Boosting)极端梯度提升,经常被用在一些比赛中,其效果显著。它是大规模并行boosted tree的工具,它是目前最快最好的开源boosted tree工具包。XGBoost 所应用的算法就是 GBDT(gradient boosting decision tree)的改进,既可以用于分类也可以用于回归问题中。
1、回归树与决策树
事实上,分类与回归是一个型号的东西,只不过分类的结果是离散值,回归是连续的,本质是一样的,都是特征(feature)到结果/标签(label)之间的映射。说说决策树和回归树,在上面决策树的讲解中相信决策树分类已经很好理解了。
分类树的样本输出(即响应值)是类的形式,如判断蘑菇是有毒还是无毒,周末去看电影还是不去。而回归树的样本输出是数值的形式,比如给某人发放房屋贷款的数额就是具体的数值,可以是0到120万元之间的任意值。
那么,这时候你就没法用上述的信息增益、信息增益率、基尼系数来判定树的节点分裂了,你就会采用新的方式,预测误差,常用的有均方误差、对数误差等。而且节点不再是类别,是数值(预测值),那么怎么确定呢,有的是节点内样本均值,有的是最优化算出来的比如Xgboost。
2、boosting集成学习
boosting集成学习,由多个相关联的决策树联合决策,什么叫相关联,举个例子,有一个样本[数据->标签]是[(2,4,5)-> 4],第一棵决策树用这个样本训练得预测为3.3,那么第二棵决策树训练时的输入,这个样本就变成了[(2,4,5)-> 0.7],也就是说,下一棵决策树输入样本会与前面决策树的训练和预测相关。
与之对比的是random foreast(随机森林)算法,各个决策树是独立的、每个决策树在样本堆里随机选一批样本,随机选一批特征进行独立训练,各个决策树之间没有啥毛线关系。
所以首先Xgboost首先是一个boosting的集成学习,这样应该很通俗了
3、这个时候大家就能感觉到一个回归树形成的关键点:(1)分裂点依据什么来划分(如前面说的均方误差最小,loss);(2)分类后的节点预测值是多少(如前面说,有一种是将叶子节点下各样本实际值得均值作为叶子节点预测误差,或者计算所得)
在学习XGBoost之前,我们得需要先明白集成思想。集成学习方法是指将多个学习模型组合,以获得更好的效果,使组合后的模型具有更强的泛化能力。另外XGBoost是以分类回归树(CART树)进行组合。故在此之前,我们先看下CART树(CART树具体原理请自行复习,或者可以留言)。如下,通过输入用户年龄、性别进行判断用户是否喜欢玩游戏的得分值。由此得到一颗CART树模型。
我们知道对于单个的决策树模型容易出现过拟合,并且不能在实际中有效应用。所以出现了集成学习方法。如下图,通过两棵树组合进行玩游戏得分值预测。其中tree1中对小男生的预测分值为2,tree2对小男生的预测分值为0.9。则该小男生的最后得分值为2.9。
将上面集成学习方法推广到一般情况,可知其预测模型为:
首先明确下我们的目标,希望建立K个回归树,使得树群的预测值尽量接近真实值(准确率)而且有尽量大的泛化能力(更为本质的东西),从数学角度看这是一个泛函最优化,多目标,看下目标函数:
其中i表示第i个样本,表示第i个样本的预测误差,误差越小越好,不然你算得上预测么?后面在这里描述表示树的复杂度的函数,越小复杂度越低,泛化能力越强,这意味着啥不用我多说。表达式为
直观上看,目标要求预测误差尽量小,叶子节点尽量少,节点数值尽量不极端(这个怎么看,如果某个样本label数值为4,那么第一个回归树预测3,第二个预测为1;另外一组回归树,一个预测2,一个预测2,那么倾向后一种,为什么呢?前一种情况,第一棵树学的太多,太接近4,也就意味着有较大的过拟合的风险)
ok,听起来很美好,可是怎么实现呢,上面这个目标函数跟实际的参数怎么联系起来,记得我们说过,回归树的参数:(1)选取哪个feature分裂节点呢;(2)节点的预测值(总不能靠取平均值这么粗暴不讲道理的方式吧,好歹高级一点)。上述形而上的公式并没有“直接”解决这两个,那么是如何间接解决的呢?
先说答案:贪心策略+最优化(二次最优化)
通俗解释贪心策略:就是决策时刻按照当前目标最优化决定,说白了就是眼前利益最大化决定,“目光短浅”策略,他的优缺点细节大家自己去了解,经典背包问题等等。
这里是怎么用贪心策略的呢,刚开始你有一群样本,放在第一个节点,这时候T=1
如果这里的l(w−yi)误差表示用的是平方误差,那么上述函数就是一个关于w的二次函数求最小值,取最小值的点就是这个节点的预测值,最小的函数值为最小损失函数。
这里处理的就是二次函数最优化!
要是损失函数不是二次函数咋办,哦,泰勒展开式会否?,不是二次的想办法近似为二次。
接着来,接下来要选个feature分裂成两个节点,变成一棵弱小的树苗,那么需要:(1)确定分裂用的feature,how?最简单的是粗暴的枚举,选择loss function效果最好的那个(关于粗暴枚举,Xgboost的改良并行方式咱们后面看);(2)如何确立节点的w
那么节奏是,选择一个feature分裂,计算loss function最小值,然后再选一个feature分裂,又得到一个loss function最小值…你枚举完,找一个效果最好的,把树给分裂,就得到了小树苗。在分裂的时候,你可以注意到,每次节点分裂,loss function被影响的只有这个节点的样本,因而每次分裂,计算分裂的增益(loss function的降低量)只需要关注打算分裂的那个节点的样本。
接下来,继续分裂,按照上述的方式,形成一棵树,再形成一棵树,每次在上一次的预测基础上取最优进一步分裂/建树,是不是贪心策略?!
凡是这种循环迭代的方式必定有停止条件,什么时候停止呢:
(1)当引入的分裂带来的增益小于一个阀值的时候,我们可以剪掉这个分裂,所以并不是每一次分裂loss function整体都会增加的,有点预剪枝的意思,阈值参数为 γ 正则项里叶子节点数 T 的系数;
(2)当树达到最大深度时则停止建立决策树,设置一个超参数max_depth,这个好理解吧,树太深很容易出现的情况学习局部样本,过拟合;
(3)当样本权重和小于设定阈值时则停止建树,这个解释一下,涉及到一个超参数-最小的样本权重和min_child_weight,和GBM的 min_child_leaf 参数类似,但不完全一样,大意就是一个叶子节点样本太少了,也终止同样是过拟合;
(4)貌似看到过有树的最大数量的…这个不确定
那节点分裂的时候是按照哪个顺序来的,比如第一次分裂后有两个叶子节点,先裂哪一个?答:同一层级的(多机)并行,确立如何分裂或者不分裂成为叶子节点
上面一部分我们知道了集成学习方法的预测模型,因为XGBoost也是集成学习方法的一种。对于XGBoost的预测模型同样可以表示为:
其中K为树的总个数,表fk示第k颗树,y表示样本x的预测结果。
其中损失函数也同样表示为:
其中l为样本x的训练误差,在这里 描述表示第k棵树的正则项。
看到了这里,我们可能会想到,现在知道了模型预测函数和损失函数,那我们是不是直接就能求出其预测模型了呢?答案肯定不是,我们首先需要明确知道优化和求解的参数是什么呢?由上面的预测模型中,我们可以看到对于每棵树的预测值是如何计算的?想到这里,你就已经知道了需要做的事了,我需要求解和优化的就是每个叶子节点的得分值,也就是的值。另外我们知道XGBoost是以CART树中的回归树作为基分类器,在给定训练数据后,其单个树的结构(叶子节点个数、树深度等等)基本可以确定了。但XGBoost并不是简单重复的将几个CART树进行组合。它是一种加法模型,将模型上次预测(由t-1棵树组合而成的模型)产生的误差作为参考进行下一棵树(第t棵树)的建立。以此,每加入一棵树,将其损失函数不断降低。如下图就为加法模型案例,它将模型预测值与实际值残差作为下一颗树的输入数据。
对于加法策略可以表示如下:
初始化(模型中没有树时,其预测结果为0):
往模型中加入第一棵树:
往模型中加入第二棵树:
…
我们知道,每次往模型中加入一棵树,其损失函数便会发生变化。另外在加入第t棵树时,则前面第t-1棵树已经训练完成,此时前面t-1棵树的正则项和训练误差都成已知常数项。对于每棵树的正则项部分,我们将在后面再细说。
如果损失函数采用均方误差时,其目标损失函数变为:
另外对于目标损失函数中的正则项(复杂度)部分,我们从单一的树来考虑。对于其中每一棵回归树,其模型可以写成:
因此,在这里。我们将该树的复杂度写成:
此时,对于XGBoost的目标函数我们可以写为:
这里我们用泰勒展开式来近似原来的目标函数。则原目标函数可以写成:
令,,同时对于第t棵树时,为常数。同时去除所有常数项。故目标损失函数可以写成:
参考文献:
[1]:https://blog.csdn.net/Kaiyuan_sjtu/article/details/80012063
[2]:https://blog.csdn.net/Kaiyuan_sjtu/article/details/80018580
[3]:https://blog.csdn.net/Guiabbey/article/details/89085101
[4]:https://blog.csdn.net/u013239656/article/details/89190224