目录
一、对极约束求解相机运动(2D-2D)
二、三角测量
三、求解PnP(3D-2D)
1.使用EPnP求解位姿
2.使用高斯牛顿法计算相机位姿
3.使用g2o进行BA优化
四、求解ICP (3D-3D)
1.SVD 方法
2、非线性优化方法
1.特征提取与匹配函数
//特征提取和匹配
void find_feature_matches(
const Mat &img_1,const Mat &img_2,
vector &keypoints1, vector &keypoints2,
vector &matches_good)
这里的代码和orb_cv中的一样
2.位姿估计函数
//位姿估计函数
void pose_estimation_2d2d(
vector keypoints1,vector keypoints2,
vector matches_good,Mat &R,Mat &t);
①Point2f
进行对极几何计算使用特征点的2D坐标,而此时特征点保存在两个KeyPoint对象的容器中,因此需要把坐标信息提取出来。
keypoints1的数组大小 = descriptors1.rows = matches的数组大小 = 500;
matches_good 数组大小是 81
这里是根据 matches_good 里queryIdx 和 trainIdx 的索引值找到筛选后的正确关键点位置,再把它的x、y坐标存储到Point2f中。取到的坐标是像素坐标。
queryIdx是图1中匹配的关键点的对应编号
trainIdx是图2中匹配的关键点的对应编号
pt可以把关键点的像素位置(x,y)取出来
②计算基础矩阵函数findFundamentalMat()
//寻找基础矩阵算法
enum
{
FM_7POINT = CV_FM_7POINT, //!< 7-point algorithm
FM_8POINT = CV_FM_8POINT, //!< 8-point algorithm
FM_LMEDS = CV_FM_LMEDS, //!< least-median algorithm
FM_RANSAC = CV_FM_RANSAC //!< RANSAC algorithm
CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
int method = FM_RANSAC,
double ransacReprojThreshold = 3., double confidence = 0.99,
OutputArray mask = noArray() );
points1: 来自第一幅图像的N个2D点的数组。点坐标应为浮点型。
points2: 第二副图像的点的数组,格式、大小与第一幅图像相同。
method:计算基础矩阵的方法:七点法、八点法、LMedS算法、RANSAC算法
ransacReprojThreshold :该参数用于RANSAC算法(随机采样过程一致性),它是从点到对极线的最大距离(以像素为单位),超过该距离,该点被视为异常值,并且不用于计算最终的基础矩阵。 可以将其设置为1-3,具体取决于点定位的精度,图像分辨率和图像噪声。
confidence :该参数仅仅在RANSAC算法以及LMedS算法中, 它指定了估计矩阵正确的期望置信度(概率)
③计算本质矩阵函数findEssentialMat()
Mat cv::findEssentialMat ( InputArray points1,
InputArray points2,
double focal = 1.0,
Point2d pp = Point2d(0, 0),
int method = RANSAC,
double prob = 0.999,
double threshold = 1.0,
OutputArray mask = noArray()
)
points1: 来自第一幅图像的N个2D点的数组。点坐标应为浮点型。
points2: 第二副图像的点的数组,格式、大小与第一幅图像相同。
focal :相机焦距
pp :相机光心
method :计算本征矩阵的方法: RANSAC、LMedS算法
prob:参数仅用于RANSAC或LMedS方法。它规定了估计矩阵正确的理想置信水平(概率)。
threshold:用于RANSAC的参数。它是从一个点到一条外极线的最大距离(以像素为单位),超过该距离的点被视为异常值,不用于计算最终的基本矩阵。它可以设置为1-3,具体取决于点定位的精度、图像分辨率和图像噪声。
④计算单应性矩阵findHomography()
Mat cv::findHomography ( InputArray srcPoints,
InputArray dstPoints,
int method = 0,
double ransacReprojThreshold = 3,
OutputArray mask = noArray(),
const int maxIters = 2000,
const double confidence = 0.995
)
srcPoints:源平面中点的坐标矩阵
dstPoints:目标平面中点的坐标矩阵
method:计算单应矩阵所使用的方法。方法如下:
0 - 利用所有点的常规方法
RANSAC - RANSAC-基于RANSAC的鲁棒算法
LMEDS - 最小中值鲁棒算法ransacReprojThreshold:将点对视为内点的最大允许重投影错误阈值(仅用于RANSAC和RHO方法
mask:可选输出掩码矩阵,通常由鲁棒算法(RANSAC或LMEDS)设置.
maxIters:RANSAC算法的最大迭代次数,默认值为2000。
confidence:可信度值,取值范围为0到1.
基础矩阵F、本质矩阵E、单应矩阵H 函数解析
④从本质矩阵恢复R和t使用recoverPose()函数
int recoverPose( InputArray E, InputArray points1, InputArray points2,
OutputArray R, OutputArray t, double focal = 1.0,
Point2d pp = Point2d(0, 0), InputOutputArray mask = noArray() );
E:已经求解出来的本质矩阵,它是3x3的矩阵;
points1:第一张图片中关键点的坐标;
points2:第二张图片中的关键点的坐标;
R:求解出来的两帧图片之间的旋转矩阵;
t:求解出来的两帧图片之间的平移向量;focal:相机焦距;
pp:像素坐标的原点;
R和t就是所求的最合适的结果,函数内部已经去掉了其他三种结果。
recoverPose()函数详细介绍
3.内参矩阵K
这里定义内参矩阵的时候用到了Mat_,它和Mat是有区别的。
Mat_ 也是一个模板类,注意它有一个下划线,以与Mat作为区别。在实际使用中,Mat_ 与 Mat 的操作函数没有多大区别,只不过Mat_需要在创建时定义元素类型,以后再调用它的方法是就不需要再传入数据的类型,而且还定义了一个操作符()来获取元素的位置。
这两个类之间的区别就是一个是定义时指定类型(Mat_),一个是使用时指定类型,可以按照不同的情况来使用。
Mat_ M(20, 20);
for (int i = 0; i < M.rows; i++)
for (int j = 0; j < M.cols; j++)
M(i, j) = i + j + 1;//不使用at,直接用()索引,更方便
如果是使用Mat, 最后一行应该是:
M.at(i,j) = ********
4.像素坐标转换为归一化坐标
书99页公式5.5
从2D图像进行ORB特征提取–>特征匹配–>极线约束八点法求E–>根据E求R,t–>三角测量求深度
1.triangulatePoints()函数
void triangulatePoints(InputArray projMatr1,
InputArray projMatr2,
InputArray projPoints1,
InputArray projPoints2,
OutputArray points4D)
projMatr1:第一个相机位姿(4x3的矩阵)
projMatr2:第二个相机位姿(4x3的矩阵)
projPoints1:第一个相机坐标系下的特征点坐标(需要转化为归一化坐标)
projPoints2:第二个相机坐标系下的特征点坐标points4D:输出三角化后的特征点的3D坐标。但需要注意的是,输出的3D坐标是齐次坐标,共四个维度,因此需要将前三个维度除以第四个维度以得到非齐次坐标xyz
2.OpenCV circle()函数
circle(CvArr* img, CvPoint center, int radius, CvScalar color, int thickness=1, int lineType=8, int shift=0)
这个函数其实就是画圆
img为源图像
center为画圆的圆心坐标
radius为圆的半径
color为设定圆的颜色,CV_RGB(255, 0,0)设置为红色,CV_RGB(255, 255,255)设置为白色,CV_RGB(0, 0,0)设置为黑色
thickness 如果是正数,表示组成圆的线条的粗细程度。否则,-1表示圆是否被填充
line_type 线条的类型。默认是8
shift 圆心坐标点和半径值的小数点位数
我使用circle()函数的时候报错,缺少一个问文件:
#include "opencv2/imgproc/imgproc.hpp"
总结:
关于关键点的归一化坐标计算方法有两种:
一是将关键点的像素坐标转化为归一化坐标
Point2d pt1_cam = pixel2cam(keypoints1[matches_good[i].queryIdx] .pt,K);
二是通过三角函数计算得到的pts_4d转化为非齐次坐标 (x,y,z)
z是深度,它的归一化坐标是(x/z,y/z,1)
Point2d pt1_cam_3d (points[i].x /points[i].z, points[i].y /points[i].z);
默认不考虑第一个相机的观测,因此把第一个相机的坐标系设定为世界坐标系
使用OpenCV的EPnP求解PnP问题
solvePnP()函数:
void solvePnP(InputArray objectPoints,
InputArray imagePoints,
InputArray cameraMatrix,
InputArray distCoeffs,
OutputArray rvec,
OutputArray tvec,
bool useExtrinsicGuess=false,
int flags = SOLVEPNP_ITERATIVE)
1. objectPoints -使用vector
的数据类型
2. imagePoints - 使用vector的数据类型
3. cameraMatrix - 相机的内参矩阵
4. distCoeffs - 相机的畸变系数
5. rvec - 输出的旋转向量,使坐标点从世界坐标系旋转到相机坐标系
6. tvec - 输出的平移向量,使坐标点从世界坐标系平移到相机坐标系
7. flags - 默认使用SOLVEPNP_ITERATIVE迭代法关于SOLVEPNP_ITERATIVE的取值对应不同的方法
enum {
SOLVEPNP_ITERATIVE = 0,
SOLVEPNP_EPNP = 1, //EPnP
SOLVEPNP_P3P = 2, //P3P
SOLVEPNP_DLS = 3, //DLS
SOLVEPNP_UPNP = 4, //UPnP
SOLVEPNP_AP3P = 5, //AP3P
SOLVEPNP_MAX_COUNT //!< Used for count
};
第一个参数是图像一中特征点的空间位置为3D点;第二个参数是图像二的像素坐标为2D点
solvePnP函数存在误匹配的情况,所以需要使用solvePnPRansac()函数,该函数的参数具体看博客
Rodrigues() 罗德里格斯公式
上一步算出的rvec是旋转向量,使用罗德里格斯公式将它变为矩阵的形式
void Rodrigues( const CvMat* src,CvMat* dst,CvMat* jacobian=0 );
src:为输入的旋转向量(3x1或1x3) 或者旋转矩阵 dst:为输出的旋转矩阵或者旋转向量 jacobian:为可选的输出雅可比矩阵(3x9或者9x3),是输入与输出数组的偏导数
注意:rvec和罗德里格斯求出的R都是Mat类型的变量,需要使用cv::cv2eigen将其变为Matrix类型
(1条消息) 【opencv】Mat与Eigen_windistance的博客-CSDN博客
总结:高斯牛顿法思路:
1.代价函数是重投影误差
2.对相机位姿 T 进行优化( T是一个带约束的矩阵,对它求导会特别复杂,所以用李代数表示)
3.计算雅可比矩阵 J (187页公式7.46)
4. 根据J 算出 H 求解线性方程 H x = b
5.本次迭代误差和上次迭代误差进行比较,若大于则迭代结束。
自定义容器 pts_3d_eigen
将pts_3d中的坐标以三维向量的形式存储到容器pts_3d_eigen中
vector pts_3d;
typedef vector> VecVector3d; //存放三维向量的容器
VecVector3d pts_3d_eigen; //存放图1的特征点的三维空间坐标
//遍历容器pts_3d中的坐标
for(int i = 0; i
增量方程: H x = g
待优化的变量是相机位姿T,计算雅可比矩阵 J(2x6) 的时候将它用李代数形式表示,因此待优化的变量变为了 (6x1的列向量)。
这里的 H = g = (是 2x1 的列向量)
norm()是求模长,squaredNorm() 模长的平方。
可以先去看看g2o类图,熟悉g2o优化过程。
总结一下做图优化的流程。
1.选择你想要的图里的节点与边的类型,确定它们的参数化形式;
2.往图里加入实际的节点和边;
3.选择初值,开始迭代;
4.每一步迭代中,计算对应于当前估计值的雅可比矩阵和海塞矩阵;
5.求解稀疏线性方程HkΔx=−bk,得到梯度方向;
6.继续用GN或LM进行迭代。如果迭代结束,返回优化值。实际上,g2o能做好第3-6步,我们要做的只是前两步。
顶点:相机的位姿 T (李群Sophus::SE3d)
边:空间点到像素坐标的投影关系,也就是误差项
关于g2o优化我在ch6中总结过。
第一步:定义顶点的类型
第二步:定义边的类型
第三步:构建图优化
① 配置块求解器 BlockSolver
②配置线性方程求解器 LinearSolver
③配置总求解器solver,并从GN,LM,Dogleg优化算法中选一个,再用上述块求解器BlockSolver初始化
④配置稀疏优化器SparseOptimizer
⑤往图中增加顶点和边,并添加到SparseOptimizer
第四步:启动图优化
estimate()函数
// 返回优化之后顶点的值.
const EstimateType& estimate() const { return _estimate;}
最终调试的时候报错:
/usr/local/include/glog/logging.h:802:对‘google::base::CheckOpMessageBuilder::CheckOpMessageBuilder(char const*)’未定义的引用
参考这篇文章下载两个库就行
vslam14讲中编译G2O报错: 对‘google::LogMessageFatal::LogMessageFatal(xxxxx)’未定义的引用; GFLAGS报错_又决定放弃的博客-CSDN博客
写完这部分看完后可以看看课后习题6,如果把第一帧相机的观测加进来会变成什么样?
参考:g2o图优化中的要点与难点
代码
①分别求出质心
,
②求区质心
,
③定义W 矩阵
④对W 进行分解求出 U 和 V(使用JacobiSVD()函数)
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
第一个参数是进行计算的矩阵
第二参数有四个取值:
ComputeFullU:在Jacobisvd中用于表示要计算方阵U
ComputeThinU:在Jacobisvd中用于表示要计算薄矩阵U
ComputeFullV:在Jacobisvd中用于表示要计算方阵V
ComputeThinV:在Jacobisvd中用于表示要计算薄矩阵V
⑤ 求 R
当W满秩时, , 求出后对R的行列式进行判断,如果小于零 , R = -R
⑥求 t
PnP 3D-2D重投影误差求导的雅各比矩阵 J 是2*6维的
ICP 3D-3D误差求导的雅各比矩阵 J 是3*6维的
Eigen子矩阵操作(block)
MatrixXf m(4,4);
m<< 1,2,3,4,
5,6,7,8,
9,10,11,12,
13,14,15,16;
cout<<"Block in the middle"<(1,1)<