YOLOv3网络结构和解析(最后的图简直完美)

原文链接:https://blog.csdn.net/dz4543/article/details/90049377

学了这么久的YOLOv3,把自己的学习心得记录下。欢迎指正!

参考:
YOLOv3网络结构细致解析
基于keras-yolov3,原理及代码细节的理解
论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf
yolov3官网:https://pjreddie.com/darknet/yolo/
Keras版本推荐:https://github.com/qqwweee/keras-yolo3
以及keras版本的解读:https://danielack.github.io/2018/08/25/yolov3Keras实现解读/

本文仅仅对于YOLO的网络结构进行说明。

1

YOLOv3本身使用的是全卷积层,连图或者说特征图的尺寸的修改都是通过卷积层来实现。来张YOLO论文的结构图:
在这里插入图片描述
再来一个YOLO输出时的显示:

layer     filters    size              input                output
   0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32 0.299 BF
   1 conv     64  3 x 3 / 2   416 x 416 x  32   ->   208 x 208 x  64 1.595 BF
   2 conv     32  1 x 1 / 1   208 x 208 x  64   ->   208 x 208 x  32 0.177 BF
   3 conv     64  3 x 3 / 1   208 x 208 x  32   ->   208 x 208 x  64 1.595 BF
   4 Shortcut Layer: 1
   5 conv    128  3 x 3 / 2   208 x 208 x  64   ->   104 x 104 x 128 1.595 BF
   6 conv     64  1 x 1 / 1   104 x 104 x 128   ->   104 x 104 x  64 0.177 BF
   7 conv    128  3 x 3 / 1   104 x 104 x  64   ->   104 x 104 x 128 1.595 BF
   8 Shortcut Layer: 5
   9 conv     64  1 x 1 / 1   104 x 104 x 128   ->   104 x 104 x  64 0.177 BF
  10 conv    128  3 x 3 / 1   104 x 104 x  64   ->   104 x 104 x 128 1.595 BF
  11 Shortcut Layer: 8
  12 conv    256  3 x 3 / 2   104 x 104 x 128   ->    52 x  52 x 256 1.595 BF
  13 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  14 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  15 Shortcut Layer: 12
  16 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  17 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  18 Shortcut Layer: 15
  19 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  20 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  21 Shortcut Layer: 18
  22 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  23 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  24 Shortcut Layer: 21
  25 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  26 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  27 Shortcut Layer: 24
  28 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  29 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  30 Shortcut Layer: 27
  31 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  32 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  33 Shortcut Layer: 30
  34 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
  35 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
  36 Shortcut Layer: 33
  37 conv    512  3 x 3 / 2    52 x  52 x 256   ->    26 x  26 x 512 1.595 BF
  38 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  39 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  40 Shortcut Layer: 37
  41 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  42 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  43 Shortcut Layer: 40
  44 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  45 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  46 Shortcut Layer: 43
  47 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  48 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  49 Shortcut Layer: 46
  50 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  51 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  52 Shortcut Layer: 49
  53 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  54 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  55 Shortcut Layer: 52
  56 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  57 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  58 Shortcut Layer: 55
  59 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  60 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  61 Shortcut Layer: 58
  62 conv   1024  3 x 3 / 2    26 x  26 x 512   ->    13 x  13 x1024 1.595 BF
  63 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512 0.177 BF
  64 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024 1.595 BF
  65 Shortcut Layer: 62
  66 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512 0.177 BF
  67 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024 1.595 BF
  68 Shortcut Layer: 65
  69 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512 0.177 BF
  70 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024 1.595 BF
  71 Shortcut Layer: 68
  72 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512 0.177 BF
  73 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024 1.595 BF
  74 Shortcut Layer: 71
  75 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512 0.177 BF
  76 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024 1.595 BF
  77 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512 0.177 BF
  78 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024 1.595 BF
  79 conv    512  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 512 0.177 BF
  80 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024 1.595 BF
  81 conv     18  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x  18 0.006 BF
  82 yolo
  83 route  79
  84 conv    256  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 256 0.044 BF
  85 upsample            2x    13 x  13 x 256   ->    26 x  26 x 256
  86 route  85 61
  87 conv    256  1 x 1 / 1    26 x  26 x 768   ->    26 x  26 x 256 0.266 BF
  88 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  89 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  90 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  91 conv    256  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x 256 0.177 BF
  92 conv    512  3 x 3 / 1    26 x  26 x 256   ->    26 x  26 x 512 1.595 BF
  93 conv     18  1 x 1 / 1    26 x  26 x 512   ->    26 x  26 x  18 0.012 BF
  94 yolo
  95 route  91
  96 conv    128  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 128 0.044 BF
  97 upsample            2x    26 x  26 x 128   ->    52 x  52 x 128
  98 route  97 36
  99 conv    128  1 x 1 / 1    52 x  52 x 384   ->    52 x  52 x 128 0.266 BF
 100 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
 101 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
 102 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
 103 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128 0.177 BF
 104 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256 1.595 BF
 105 conv     18  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x  18 0.025 BF
 106 yolo

   
     
     
     
     
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108

实际,这个已经告诉了我们每层的输出情况。每层特征图的大小情况:
在这里插入图片描述
在前文网络的基础上,用红色做了注释。residual使用残差结构。什么是残差结构?举个例子在第一层残差结构(其输出为208208128),其输入为20820864,经过3211和6433的卷积后,其生成的特征图与输入叠加起来。其结构如下:
在这里插入图片描述
其叠加后的特征图作为新的输入输入下一层。YOLO主体是由许多这种残差模块组成,减小了梯度爆炸的风险,加强了网络的学习能力。

可以看到YOLO有3个尺度的输出,分别在52×52,26×26,13×13。嗯,都是奇数,使得网格会有个中心位置。同时YOLO输出为3个尺度,每个尺度之间还有联系。比如说,13×13这个尺度输出用于检测大型目标,对应的26×26为中型的,52×52用于检测小型目标。上一张图,我觉得很详细看得懂。
在这里插入图片描述
这个检测COCO(80个类的),所以其输出需要构造为:S×S×3×(5+class_number)。解释下为什么是这样。
YOLO将图像划分为S×S的网格,当目标中心落在某个网格中,就用这个网格去检测它,这是S×S的由来。为什么是3,是因为每个网格需要检测3个anchorbox(注意有3个尺度),所以对于每个尺度,其输出为S×S×3×???
对于一个anchorbox,它包含坐标信息(x , y , w , h )以及置信度,而这有5个信息;同时还会包含是否所有类别的信息,使用one-hot编码。比如说有3个类:person、car、dog。检测的结果是人,那么就编码为[1,0,0]。可见所有类别信息都会被编码,COCO有80个类别的话,便是5+80。所以,对于每个维度的输出,其结果为: S × S × 3 × ( 5 + 80 ) = S × S × 255 S × S × 3 × ( 5 + 80 ) = S × S × 255 S × S × 3 × ( 5 + 80 ) = S × S × 255 S×S×3×(5+80)=S×S×255S×S×3×(5+80)=S×S×255 S×S×3×(5+80) = S×S×255 S×S×3×5+80=S×S×255S×S×3×5+80=S×S×255S×S×3×5+80=S×S×255S×S×3×5+80=S×S×255.
同时从上图可以看到,其结果便是通过一些卷积操作,将输出构造成这样。并且将不同尺度的特征图叠加到一起,增加输出的信息。这个图可以好好看看。

                                

你可能感兴趣的:(目标检测)