单细胞基因可视化之热图的根本改造2

我们前面已经说过了单细胞marker/或者其他任意基因的热图的简单修饰(单细胞基因可视化之热图改造修饰1),仅仅是基于颜色和DoHeatmap函数的参数修饰。那么要对热图进行根本的改造,关键点在于提取表达矩阵,然后对分组进行注释,就可以使用heatmap或者ComplexHeatmap来做图了。

首先计算marker基因,然后选择自己需要展示的基因。

library(Seurat)
library(stringr)   
library(dplyr)
all.markers  <- FindAllMarkers(scedata, 
                               only.pos = TRUE, 
                               min.pct = 0.25, 
                               logfc.threshold = 0.75)
markers <- c("ACKR1",
             "RAMP2",
             "CLDN5",
             "TM4SF1",
             "PLVAP",
             "IFI27",
             "CLU",
             "AQP1",
             "GNG11",
             "VWF",
             "CLEC14A",
             "PECAM1",
             "SELE",
             "COL3A1",
             "LUM",
             "COL1A1",
             "COL1A2",
             "DCN",
             "SFRP2",
             "C1S",
             "COL6A2",
             "CXCL13",
             "CFD",
             "CCL5",
             "CCL4",
             "CXCR4",
             "PTPRC",
             "LYZ",
             "CD52",
             "HCST",
             "CD3D",
             "NKG7",
             "GZMA",
             "CD2",
             "S100A14",
             "KRT16",
             "LY6D",
             "LGALS7B",
             "SFN",
             "FXYD3",
             "DSP",
             "CALML3",
             "PITX1",
             "ALDH3A1",
             "DAPL1",
             "TRIM29",
             "PKP1",
             "PKP3",
             "DSC3",
             "ACTA2",
             "TAGLN",
             "TPM2",
             "MYH11",
             "RERGL",
             "RGS5",
             "FRZB",
             "LBH")
sc_marker <- all.markers[markers,]

然后提取表达矩阵,并对细胞进行注释。


# 提取原始表达矩阵
exp <- GetAssayData(scedata, slot = "counts")
exp <- log10(exp + 1)
head(scedata$celltype)
new_celltype <- sort(scedata$celltype)
head(new_celltype)
cs_data <- as.matrix(exp[sc_marker$gene, names(new_celltype)])

ac=data.frame(cluster=new_celltype)
rownames(ac)=colnames(cs_data)

至此,我们需要作图的数据就已经得到了,可以使用热图函数进行绘制了。热图我们公众号之前讲的很详细了,可以参考,同样的做法。


library(pheatmap)
pheatmap(cs_data,show_colnames =F,show_rownames = T,
         cluster_rows = F,
         cluster_cols = F,
         annotation_col=ac,
         border_color = "black")

单细胞基因可视化之热图的根本改造2_第1张图片

图片

要进一步修饰,更加个性化的作图,采用ComplexHeatmap。

library(ComplexHeatmap)
color = paletteer_d("ggsci::nrc_npg")[c(1,3,4,2,5)]
names(color) <- levels(new_celltype)
top_anno <- HeatmapAnnotation(cluster=anno_block(gp=gpar(fill=color),
                                                 labels = levels(new_celltype),
                                                 labels_gp = gpar(cex=0.5,color='white',fontsize = 18)))

Heatmap(cs_data,
        cluster_rows = FALSE,
        cluster_columns = FALSE,
        show_column_names = FALSE,
        show_row_names = T,
        column_split = new_celltype,
        top_annotation = top_anno, 
        column_title = NULL,
        heatmap_legend_param = list(
          title='Expression',
          title_position='leftcenter-rot'),
        col = colorRampPalette(c("white","#66CCFF","#333366"))(100),
        border = "black",
        row_names_gp = gpar(fontsize = 8))

单细胞基因可视化之热图的根本改造2_第2张图片

图片

看起来效果很好,心情舒适。今天分享就到这里了,整个热图也就这么些内容,想要其他更加个性化的修饰可以结合我们之前的内容自己调整。

觉得分享用的支持一下呗!不点赞、不分享还等什么!
更多内容请关注我的个人公众号《KS科研分享与服务》

你可能感兴趣的:(r语言,开发语言,数据挖掘,聚类,数据分析)