- 语音识别技术有哪些应用场景?
不想秃头的程序
语音识别人工智能
语音识别技术,作为人工智能领域的重要分支,已经深入到我们日常生活的方方面面。以下是一些常见的应用场景:智能助理智能助理如Siri、GoogleAssistant以及Alexa等,都基于语音识别技术来实现用户交互。用户可以通过语音命令来拨打电话、查询信息、设置提醒等。这些助理软件能够理解多种语言和方言,并能够在复杂的环境噪声中准确识别用户的指令。智能家居在智能家居领域,语音识别被用于控制各种智能设备
- 微软 Azure AI 服务免费试用及申请:语音识别、文本转语音、基于视觉、语言处理、文档分析等10大场景
全云在线allcloudonline
microsoftazure人工智能
为方便企业认识和快速上手AzureAI服务,我们总结了一套包括语音识别、文本转语音、基于视觉、语言处理场景、文档分析场景等全面的预构建模型和演示,旨在解决各种用例。这些模型易于访问,可帮助企业无缝实施AI驱动的解决方案,如下是已整理并编录的AzureAI服务中提供的预构建演示,希望这可以帮助您将AI无缝融入您的产品和服务中。微软AzureAI服务可以合规、稳定地提供企业用户使用ChatGPT的可能
- 基于人工智能的智能语音助手
人工智能发烧友
人工智能
语音助手的自然语言处理模块是语音助手系统的关键组成部分。通过这个模块,系统能够识别用户的意图并做出相应的回应。我们可以使用NLP技术来解析文本输入,并将其转换为系统可以理解的命令或指令。在本项目中,我们将结合语音识别、自然语言处理和语音合成技术,构建一个功能简化的语音助手。一、项目背景与需求分析1.1项目目标本项目旨在创建一个语音助手系统,它可以:1.语音识别:从用户的语音输入中提取文本信息。2.
- 【ShuQiHere】探索人工智能核心:机器学习的奥秘
ShuQiHere
人工智能机器学习
【ShuQiHere】什么是机器学习?机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活
- 机器学习,深度学习,AGI,AI的概念和区别
我就是全世界
人工智能机器学习深度学习
1.人工智能(AI)的定义与范围1.1AI的基本概念人工智能(AI)是指通过计算机系统模拟人类智能的技术和科学。AI的目标是创建能够执行通常需要人类智能的任务的系统,如视觉识别、语音识别、决策制定和语言翻译。AI的核心在于其能够处理和分析大量数据,从中提取有用的信息,并根据这些信息做出决策或预测。AI的发展可以追溯到20世纪50年代,当时科学家们开始探索如何使机器能够执行复杂的任务。随着计算能力的
- Python 实时语音识别
TEDxPY
python学习python资源语音识别Python人工智能实时语音识别百度语音API
Python实时语音识别语音识别语音识别API语音识别步骤效果展示代码下载最近自己想接触下语音识别,经过一番了解和摸索,实现了对语音识别API的简单调用,正好写文章记录下。目前搜到的帖子里,有现成的调用百度语音API来对音频文件进行识别的;也有通过谷歌语音服务来实现了实时语音识别的。由于我这谷歌语音一直调用不成功,就将二者结合,简单实现了通过百度语音API来进行实时语音识别。语音识别语音识别技术就
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 本地搭建 Whisper 语音识别模型实现实时语音识别研究
一只老虎
人工智能编程开发算法研究whisper语音识别人工智能
目录摘要关键词1.引言2.Whisper模型简介3.环境准备4.系统架构与实现4.1模型加载4.2实时音频输入处理4.3实时转录处理4.4程序实现的框架4.5代码实现5.实验与结果6.讨论7.结论参考文献摘要语音识别技术近年来发展迅速,广泛应用于智能家居、智能客服、语音助手等领域。Whisper是由OpenAI开发的一种开源语音识别模型,具有高效的转录能力。本研究旨在探讨如何在本地环境中搭建Whi
- 如何从0到1本地搭建whisper语音识别模型
MaxCode-1
搭建本地gptwhisper
文章目录环境准备1.系统要求2.安装依赖项1:安装Python和虚拟环境2:安装Whisper3:下载Whisper模型4:进行语音识别5:提高效率和精度6:开发和集成Whisper是OpenAI发布的一个强大的语音识别模型,它可以将语音转换为文本,支持多语言输入,并且可以处理各种音频类型。以下是一个从0到1的本地搭建Whisper模型进行语音识别教程环境准备1.系统要求操作系统:Linux、Ma
- FunASR 语音识别系统概述
瑞雪兆我心
语音识别人工智能
FunASR(AFundamentalEnd-to-EndSpeechRecognitionToolkit)是一个基础的语音识别工具包,提供多种功能,包括语音识别(ASR)、语音端点检测(VAD)、标点恢复(PR)、语言模型(LM)、说话人分离等。项目源地址1语音识别(ASR)参考语音交互:聊聊语音识别-ASR(万字长文)语音识别技术(AutomaticSpeechRecognition,ASR)
- 使用PyTorch实现的DeepSpeech模型: 强大的语音识别利器
毕艾琳
使用PyTorch实现的DeepSpeech模型:强大的语音识别利器deepspeech.pytorchSpeechRecognitionusingDeepSpeech2.项目地址:https://gitcode.com/gh_mirrors/de/deepspeech.pytorch在今天的数字化世界中,语音识别技术已成为人机交互的关键组成部分。deepspeech.pytorch是一个由Sea
- 使用matlab的热门问题
七十二五
值得关注matlab开发语言青少年编程算法经验分享
MATLAB广泛应用于科学计算、数据分析、信号处理、图像处理、机器学习等多个领域,因此热门问题也涵盖了这些方面。以下是一些可能被认为当前最热门的MATLAB问题:深度学习与神经网络:如何使用MATLAB的深度学习工具箱(DeepLearningToolbox)来构建和训练神经网络?如何利用MATLAB进行图像识别、语音识别或自然语言处理等深度学习应用?数据分析与可视化:如何使用MATLAB进行大数
- 2021-01-02随笔
0清婉0
人工智能时代最重要的是机器学习,像数据分析、图像识别、数据挖掘、自然语言处理、语音识别等都是以其为基础的,也可以说人工智能的各种应用都需要机器学习来支撑。现在各大公司越来越注重数据的价值,人工成本也是越来越高,所以机器学习也就变得不可或缺了。数据分析、自然语言处理、语音识别,这将是作为前端人员的我,在2021年学习的重点。现收集几本关于数据分析的书籍,作为参考书籍学习:1.《跟着迪哥学Python
- 基于深度学习的对抗样本生成与防御
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的对抗样本生成与防御是当前人工智能安全领域的关键研究方向。对抗样本是通过对输入数据进行微小扰动而产生的,能够导致深度学习模型做出错误预测。这对图像分类、自然语言处理、语音识别等应用构成了严重威胁,因此相应的防御措施也在不断发展。1.对抗样本生成对抗样本生成的方法主要有两大类:基于梯度的方法和基于优化的方法。1.1基于梯度的方法这些方法利用模型的梯度信息,通过细微的扰动来生成对抗样本,迫
- 垂类大模型:领域专家参与的重要性
澳鹏Appen
生成式AI人工智能与机器学习人工智能AI生成式AI
随着人工智能(AI)的不断发展,训练数据的完整性和质量至关重要。早期的AI模型专注于处理和分析任务,如图像识别、语音识别和情感分析。这些模型通常是在大型数据集上训练的,标注任务多可以由具有一般技能的人类执行,早期模型中的缺陷可以被标注员轻松识别和纠正。然而近年,AI领域经历了重大变革。当代模型被设计用于更复杂的功能,如推理和总结,旨在处理需要更高认知参与的复杂和多样化场景。这些先进模型不仅需要原始
- 推荐项目:VITS2 Chinese - 轻松转化你的中文语音至文本
傅尉艺Maggie
推荐项目:VITS2Chinese-轻松转化你的中文语音至文本VITS2-ChineseVITS2forChinesespeech|最新VITS2中文语音合成项目地址:https://gitcode.com/gh_mirrors/vi/VITS2-Chinese项目介绍VITS2Chinese是一个针对中文语音的自动转文字工具,它简化了传统语音识别的复杂流程,让用户只需上传音频文件,就能一键完成语
- 人机交互与现代战争
人机与认知实验室
人机交互
人机交互技术在现代战争中的应用越来越广泛,它可以帮助士兵更好地完成任务,提高作战效能,减少人员伤亡。人机交互与认知在军事应用方面的进展有很多,比如:(1)虚拟现实和增强现实技术:这些技术可以为士兵提供沉浸式的训练环境,模拟各种战斗场景和任务,帮助他们提高技能和决策能力。(2)语音识别和自然语言处理:通过语音识别和自然语言处理技术,士兵可以通过语音指令与武器系统、通信设备等进行交互,提高操作效率和减
- 机器学习-神经网络:循环神经网络(RNN)详解
刷刷刷粉刷匠
机器学习机器学习神经网络rnn
引言在当今人工智能(AI)和深度学习(DL)领域,循环神经网络(RNN)作为一种专门处理序列数据的模型,具有不可忽视的重要性。RNN的设计目标是模拟和处理序列中的时间依赖关系,使其成为许多应用场景的理想选择,如自然语言处理(NLP)、时间序列预测和语音识别等。它不仅能处理固定长度的数据输入,还能应对输入长度不一的序列,从而为各种复杂的时序数据任务提供了强有力的支持。1.RNN的起源与发展循环神经网
- WhisperX: 带时间戳的自动语音识别及说话人分离
史恋姬Quimby
WhisperX:带时间戳的自动语音识别及说话人分离whisperXm-bain/whisperX:是一个用于实现语音识别和语音合成的JavaScript库。适合在需要进行语音识别和语音合成的网页中使用。特点是提供了一种简单、易用的API,支持多种语音识别和语音合成引擎,并且能够自定义语音识别和语音合成的行为。项目地址:https://gitcode.com/gh_mirrors/wh/whisp
- 语音识别 学习笔记2024
AI算法网奇
深度学习基础音视频人工智能
目录dragonfly阿里达摩院FunASR:一款高效的端到端语音识别工具包不错的功能介绍librosa安装语音识别dragonfly阿里达摩院FunASR:一款高效的端到端语音识别工具包不错的功能介绍librosa,一个很有趣的Python库!-简书音频转特征向量GitHub-librosa/librosa:Pythonlibraryforaudioandmusicanalysislibrosa
- 用“说”智能控制灯具开关语音识别芯片NRK3603
九芯电子
九芯电子语音芯片方案语音识别人工智能语音识别技术语音识别芯片语音芯片
用“说”智能控制灯具开关是一种基于语音识别技术的智能家居设备,它通过内置的语音识别芯片,利用离线识别算法,将用户的语音指令实现对灯具的控制,NRK3603语音识别芯片成为客户低成本的离线语音识别方案。功能特性:1.内核和存储高性能32bitRlsc内核,主频160MHZ,内置4MBSPIFLASH。2.AI算法:离线语音识别,采用最新的神经网络(TDNN)算法,具有识别精准,误判率低等优势,5米远
- 快速搭建本地 Whisper 语音识别大模型
码上飞扬
whisper
在语音识别领域,OpenAI的Whisper模型以其高效且准确的特性迅速受到瞩目。许多人可能觉得在本地环境中运行这样一个大模型过于复杂,但其实,经过正确的指导,你完全可以在自己的计算机上搭建一个高性能的语音识别系统。前置准备在开始之前,你需要确保计算机符合以下条件:Python3.7+环境GPU支持(CUDA驱动):尽管CPU也能运行,但GPU会更快。足够的存储空间:模型可能需要几个GB。步骤一:
- 本地搭建和运行Whisper语音识别模型小记
LQS2020
whisper
搭建本地的Whisper语音识别模型可以是一个非常有用的项目,尤其是在需要离线处理语音数据的情况下。Whisper是OpenAI开发的一个开源语音识别模型,支持多语言和高效的转录能力。以下是详细的步骤来本地搭建和运行Whisper语音识别模型:1.准备环境安装Python确保你的系统上安装了Python3.8及以上版本。可以从Python官方网站下载并安装。创建虚拟环境(可选)为了避免依赖冲突,建
- 【AIGC】Whisper语音识别模型概述,应用场景和具体实例及如何本地搭建Whisper语音识别模型?
@我们的天空
AIGCwhisper语音识别AIGCpython人工智能机器学习深度学习
欢迎大家来到我们的天空如果文章内容对您有所触动,别忘了点赞、关注,收藏!作者简介:我们的天空《头衔》:大厂高级软件测试工程师,阿里云开发者社区专家博主,CSDN人工智能领域新星创作者。《博客》:人工智能,深度学习,机器学习,python,自然语言处理,AIGC等分享。所属的专栏:TensorFlow项目开发实战,人工智能技术主页:我们的天空一、Whisper语音识别模型概述Whisper是由Ope
- Python知识点:如何使用Python实现语音识别
超哥同学
Python系列python语音识别xcode编程面试
要在Python中实现语音识别,你可以使用SpeechRecognition库,它是一个功能强大的库,能够识别音频中的语音并将其转换为文本。下面是一个简单的示例代码,展示如何使用这个库进行语音识别。步骤1:安装依赖库首先,你需要安装SpeechRecognition库和pyaudio库。你可以使用以下命令安装这些库:pipinstallSpeechRecognitionpipinstallpyau
- 【机器学习-神经网络】循环神经网络
刷刷刷粉刷匠
机器学习神经网络rnn
在机器学习和深度学习的领域中,循环神经网络(RNN)作为一种处理序列数据的强大工具,已经在诸多应用场景中展现出了巨大的潜力。RNN能够有效地捕捉序列数据中的时序依赖关系,因此在自然语言处理、时间序列预测和语音识别等任务中发挥着至关重要的作用。本文将对RNN进行深入探讨,从其基本理论、工作原理到实际应用及代码实现,全面剖析RNN在现代机器学习中的应用价值。1.RNN基础理论1.1RNN概述循环神经网
- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- 基于人工智能的智能客服系统
嵌入式详谈
人工智能
目录引言项目背景客服系统的现状与挑战AI在客服领域的应用前景系统设计系统架构模块划分关键技术与实现自然语言处理(NLP)对话管理语音识别与合成情感分析数据准备与训练数据收集数据预处理模型训练系统集成与部署前端接口设计后端服务实现系统集成部署方案测试与优化系统测试性能优化用户反馈与迭代应用场景与案例分析电子商务客服银行与金融服务医疗健康咨询常见问题及解决方案常见问题解决方案未来发展与展望结论1.引言
- YeAudio音频工具的介绍和使用
夜雨飘零1
语音音视频语音识别pythonffmpeg
夜雨飘零音频工具这款Python音频处理工具功能强大,支持读取多种格式的音频文件。它不仅能够对音频进行裁剪、添加混响、添加噪声等多种处理操作,还广泛应用于语音识别、语音合成、声音分类以及声纹识别等多个项目领域。安装使用pip安装。pipinstallyeaudio-U-ihttps://pypi.tuna.tsinghua.edu.cn/simple(推荐)使用源码安装。gitclonehttps
- 深度学习基础之循环神经网络
Ctrl+CV九段手
机器学习和深度学习rnn深度学习神经网络人工智能机器学习学习
目录基本概念与特点定义与工作原理结构组成应用领域自然语言处理语音识别时间序列分析优缺点优点缺点改进方法总结循环神经网络在自然语言处理中的最新应用和研究进展是什么?长短期记忆网络(LSTM)与门控循环单元(GRU)在解决梯度消失和爆炸问题上的具体差异和优势是什么?LSTM的结构与优势GRU的结构与优势具体差异门的数量:计算复杂度:性能对比:总结双向循环神经网络如何增强模型的上下文捕捉能力,与单向RN
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟