Pytorch自带手写数字识别初体验

代码

# -*- coding: utf-8 -*-   
import torch
import numpy
from matplotlib import pyplot
from torch import nn
from torch.nn import functional as F
from torch import optim
import torchvision
from torchvision import transforms as TT

# 框架信息
print("torch.__version__=",torch.__version__)
print("torch.cuda.is_available()=",torch.cuda.is_available())
print()

# 绘制曲线
def plot_curve(data):
    fig=pyplot.figure()
    pyplot.plot(range(len(data)),data,color='blue')
    pyplot.legend(["value"],loc="upper right")
    pyplot.xlabel("step")
    pyplot.ylabel("value")
    pyplot.show()

# 识别结果
def plot_image(img,label,name):
    fig=pyplot.figure()
    for i in range(6):
        pyplot.subplot(2,3,i+1)
        pyplot.tight_layout()
        pyplot.imshow(img[i][0]*0.3081+0.1307,cmap="gray",interpolation="none")
        pyplot.title("{}:{}".format(name,label[i].item()))
        pyplot.xticks([])
        pyplot.yticks([])
    pyplot.show()

def one_hot(label,depth=10):
    out=torch.zeros(label.size(0),depth)
    idx=torch.LongTensor(label).view(-1,1)
    out.scatter_(dim=1,index=idx,value=1)
    return out

batch_size=512


# step1. load dataset
# 训练集【本地没有的话会联网下载】,shuffle=True打乱
train_loader=torch.utils.data.DataLoader(
    torchvision.datasets.MNIST("mnist_data",train=True,download=True,
                                transform=TT.Compose([
                                        TT.ToTensor(),
                                        TT.Normalize(
                                                (0.1307,),(0.3081,)
                                            )
                                    ])
                               ),
                               batch_size=batch_size,shuffle=True)
# 测试集【本地没有的话会联网下载】shuffle=False不需要打乱
test_loader=torch.utils.data.DataLoader(
    torchvision.datasets.MNIST("mnist_data/",train=False,download=True,
                                transform=TT.Compose([
                                        TT.ToTensor(),
                                        TT.Normalize(
                                                (0.1307,),(0.3081,)
                                            )
                                    ])
                               ),
                               batch_size=batch_size,shuffle=False)

x,y=next(iter(train_loader))
print("x.shape=",x.shape,"y.shape=",y.shape)
print("x.min()=",x.min(),"y.min()=",y.min())
print("x.max()=",x.max(),"y.max()=",y.max())
print()
# 显示一下
plot_image(x,y,"image sample")

# 自定义模型
class Net(nn.Module):
    # 构造函数
    def __init__(self):
        super(Net,self).__init__()
        # 3层 wx+b
        self.fc1=nn.Linear(28*28,512)
        self.fc2=nn.Linear(512,256)
        self.fc3=nn.Linear(256,128)
        self.fc4=nn.Linear(128,64)
        self.fc5=nn.Linear(64,32)
        self.fc6=nn.Linear(32,16)
        self.fc7=nn.Linear(16,10)

    # 前向求函数值
    def forward(self,x):
        x=F.relu(self.fc1(x))
        x=F.relu(self.fc2(x))
        x=F.relu(self.fc3(x))
        x=F.relu(self.fc4(x))
        x=F.relu(self.fc5(x))
        x=F.relu(self.fc6(x))
        x=self.fc7(x)
        return x

net=Net()
# [w1,b1,w2,b2,w3,b3]
optimizer=optim.SGD(net.parameters(),lr=0.001,momentum=0.9)

train_loss=[]

# 循环迭代n次
n=5000
for epoch in range(n):
    for batch_idx,(x,y) in enumerate(train_loader):
        # x:[b,1,28,28] y:[512]
        x=x.view(x.size(0),28*28)
        # =>[b,10]
        out=net(x)
        # [b,10]
        y_onehot=one_hot(y,10)
        # loss=mse(out,y_onehot)
        loss=F.mse_loss(out,y_onehot)

        optimizer.zero_grad()
        loss.backward()
        # w'=w-lr*grad
        optimizer.step()
        # 把损失值记录起来
        train_loss.append(loss.item())
        print(epoch,batch_idx,loss.item())

# 打印损失函数在训练中的走势
plot_curve(train_loss)
# we get optimal [w1,b1,w2,b2,w3,b3]

total_correct=0
for x,y in test_loader:
    x=x.view(x.size(0),28*28)
    out=net(x)
    # out:[b,10]=>pred:[b]
    pred=out.argmax(dim=1)
    correct=pred.eq(y).sum().float().item()
    total_correct+=correct
total_num=len(test_loader.dataset)
acc=total_correct/total_num
print("准确度:",acc)

x,y=next(iter(test_loader))
out=net(x.view(x.size(0),28*28))
pred=out.argmax(dim=1)
# 显示测试结果
plot_image(x,pred,"test")

损失值训练趋势

Pytorch自带手写数字识别初体验_第1张图片

 Pytorch自带手写数字识别初体验_第2张图片

 

 

你可能感兴趣的:(pytorch,深度学习,python)