【C++ yolov5 libtorch】GPU windows测试

yolov5LoadAndDetect.cpp

#include 
#include 
#include 

#include "include/detector.h"
#include "include/cxxopts.hpp"


using namespace std;

std::vector LoadNames(const std::string& path) {
	// load class names
	std::vector class_names;
	std::ifstream infile(path);
	if (infile.is_open()) {
		std::string line;
		while (getline(infile, line)) {
			class_names.emplace_back(line);
		}
		infile.close();
	}
	else {
		std::cerr << "Error loading the class names!\n";
	}

	return class_names;
}


void Demo(cv::Mat& img,
	const std::vector>& detections,
	const std::vector& class_names,
	bool label = true) {

	if (!detections.empty()) {
		for (const auto& detection : detections[0]) {
			const auto& box = detection.bbox;
			float score = detection.score;
			int class_idx = detection.class_idx;

			cv::rectangle(img, box, cv::Scalar(0, 0, 255), 2);

			if (label) {
				std::stringstream ss;
				ss << std::fixed << std::setprecision(2) << score;
				std::string s = class_names[class_idx] + " " + ss.str();

				auto font_face = cv::FONT_HERSHEY_DUPLEX;
				auto font_scale = 1.0;
				int thickness = 1;
				int baseline = 0;
				auto s_size = cv::getTextSize(s, font_face, font_scale, thickness, &baseline);
				cv::rectangle(img,
					cv::Point(box.tl().x, box.tl().y - s_size.height - 5),
					cv::Point(box.tl().x + s_size.width, box.tl().y),
					cv::Scalar(0, 0, 255), -1);
				cv::putText(img, s, cv::Point(box.tl().x, box.tl().y - 5),
					font_face, font_scale, cv::Scalar(255, 255, 255), thickness);
			}
		}
	}

	//cv::namedWindow("Result", cv::WINDOW_AUTOSIZE);
	cv::resize(img, img, cv::Size(717, 600));// cv::Size(956, 800)  cv::Size(717, 600)
	cv::imshow("Result", img);
	cv::waitKey(0);
}


int main(int argc, const char* argv[]) {
	cxxopts::Options parser(argv[0], "A LibTorch inference implementation of the yolov5");

	// TODO: add other args
	parser.allow_unrecognised_options().add_options()
		("weights", "model.torchscript.pt path", cxxopts::value()->default_value("weights/best.torchscript"))//torchscript格式 已验证
		("source", "source", cxxopts::value()->default_value("./test/1.bmp"))//bus.jpgv
		("conf-thres", "object confidence threshold", cxxopts::value()->default_value("0.4"))
		("iou-thres", "IOU threshold for NMS", cxxopts::value()->default_value("0.5"))
		("gpu", "Enable cuda device or cpu", cxxopts::value()->default_value("true"))
		("view-img", "display results", cxxopts::value()->default_value("true"))
		("h,help", "Print usage");

	auto opt = parser.parse(argc, argv);

	if (opt.count("help")) {
		std::cout << parser.help() << std::endl;
		exit(0);
	}

	// check if gpu flag is set
	bool is_gpu = opt["gpu"].as();

	// set device type - CPU/GPU
	torch::DeviceType device_type; //libtorch 版本应为GPU
	if (torch::cuda::is_available() && is_gpu) {// 链接器-命令行 /INCLUDE:?warp_size@cuda@at@@YAHXZ   /INCLUDE:?searchsorted_cuda@native@at@@YA?AVTensor@2@AEBV32@0_N1@Z
		device_type = torch::kCUDA;//重新编译 pytorch 使得编译时CUDA能够与运行时CUDA保持一致 https://blog.csdn.net/qq_36038453/article/details/120278523

	}
	else {
		device_type = torch::kCPU;
	}
	std::cout << "Device available :" << torch::cuda::is_available() << std::endl;
	// load class names from dataset for visualization
	std::vector class_names = LoadNames("weights/block.txt");
	if (class_names.empty()) {
		return -1;
	}

	// load network
	std::string weights = opt["weights"].as();
	auto detector = Detector(weights, device_type);





	// load input image
	std::string source = opt["source"].as();
	cv::Mat img = cv::imread(source);
	if (img.empty()) {
		std::cerr << "Error loading the image!\n";
		return -1;
	}

	// run once to warm up
	std::cout << "Run once on empty image" << std::endl;
	auto temp_img = cv::Mat::zeros(img.rows, img.cols, CV_32FC3);//
	detector.Run(temp_img, 1.0f, 1.0f);//temp_imag 是黑色

	// set up threshold
	float conf_thres = opt["conf-thres"].as();
	float iou_thres = opt["iou-thres"].as();

	// inference
	auto result = detector.Run(img, conf_thres, iou_thres);

	// visualize detections
	if (opt["view-img"].as()) {
		Demo(img, result, class_names);
	}

	cv::destroyAllWindows();
	return 0;
}

detector.cpp

#include "detector.h"


Detector::Detector(const std::string& model_path, const torch::DeviceType& device_type) : device_(device_type) {
	try {
		// Deserialize the ScriptModule from a file using torch::jit::load().
		LoadLibraryA("ATen_cuda.dll");
		LoadLibraryA("c10_cuda.dll");
		LoadLibraryA("torch_cuda.dll");
		LoadLibraryA("torchvision.dll");
		module_ = torch::jit::load(model_path);
	}
	catch (const c10::Error& e) {
		std::cerr << "Error loading the model!\n" << e.what();
		std::exit(EXIT_FAILURE);
	}

	half_ = (device_ != torch::kCPU);
	module_.to(device_);

	if (half_) {
		module_.to(torch::kHalf);
	}

	module_.eval();
}


std::vector>
Detector::Run(const cv::Mat& img, float conf_threshold, float iou_threshold) {
	torch::NoGradGuard no_grad;
	std::cout << "----------New Frame----------" << std::endl;

	// TODO: check_img_size()

	/*** Pre-process ***/

	auto start = std::chrono::high_resolution_clock::now();

	// keep the original image for visualization purpose
	cv::Mat img_input = img.clone();

	std::vector pad_info = LetterboxImage(img_input, img_input, cv::Size(416, 416));//cv::Size(640, 640)
	const float pad_w = pad_info[0];
	const float pad_h = pad_info[1];
	const float scale = pad_info[2];

	cv::cvtColor(img_input, img_input, cv::COLOR_BGR2RGB);  // BGR -> RGB     旧的cv::COLOR_BGR2RGB
	img_input.convertTo(img_input, CV_32FC3, 1.0f / 255.0f);  // normalization 1/255
	auto tensor_img = torch::from_blob(img_input.data, { 1, img_input.rows, img_input.cols, img_input.channels() }).to(device_);

	tensor_img = tensor_img.permute({ 0, 3, 1, 2 }).contiguous();  // BHWC -> BCHW (Batch, Channel, Height, Width)

	if (half_) {
		tensor_img = tensor_img.to(torch::kHalf);
	}

	std::vector inputs;
	inputs.emplace_back(tensor_img);

	auto end = std::chrono::high_resolution_clock::now();
	auto duration = std::chrono::duration_cast(end - start);
	// It should be known that it takes longer time at first time
	std::cout << "pre-process takes : " << duration.count() << " ms" << std::endl;

	/*** Inference ***/
	// TODO: add synchronize point
	start = std::chrono::high_resolution_clock::now();

	// inference
	torch::jit::IValue output = module_.forward(inputs);//
	//auto output = module_.forward(inputs);

	//auto detections = module_.forward(inputs).toTensor();
	end = std::chrono::high_resolution_clock::now();
	duration = std::chrono::duration_cast(end - start);
	// It should be known that it takes longer time at first time
	std::cout << "inference takes : " << duration.count() << " ms" << std::endl;

	/*** Post-process ***/

	start = std::chrono::high_resolution_clock::now();
	auto detections = output.toTuple()->elements()[0].toTensor();

	// result: n * 7
	// batch index(0), top-left x/y (1,2), bottom-right x/y (3,4), score(5), class id(6)
	auto result = PostProcessing(detections, pad_w, pad_h, scale, img.size(), conf_threshold, iou_threshold);

	end = std::chrono::high_resolution_clock::now();
	duration = std::chrono::duration_cast(end - start);
	// It should be known that it takes longer time at first time
	std::cout << "post-process takes : " << duration.count() << " ms" << std::endl;

	return result;
}


std::vector Detector::LetterboxImage(const cv::Mat& src, cv::Mat& dst, const cv::Size& out_size) {
	auto in_h = static_cast(src.rows);
	auto in_w = static_cast(src.cols);
	float out_h = out_size.height;
	float out_w = out_size.width;

	float scale = (std::min)(out_w / in_w, out_h / in_h);

	int mid_h = static_cast(in_h * scale);
	int mid_w = static_cast(in_w * scale);

	cv::resize(src, dst, cv::Size(mid_w, mid_h));

	int top = (static_cast(out_h) - mid_h) / 2;
	int down = (static_cast(out_h) - mid_h + 1) / 2;
	int left = (static_cast(out_w) - mid_w) / 2;
	int right = (static_cast(out_w) - mid_w + 1) / 2;

	cv::copyMakeBorder(dst, dst, top, down, left, right, cv::BORDER_CONSTANT, cv::Scalar(114, 114, 114));

	std::vector pad_info{ static_cast(left), static_cast(top), scale };
	return pad_info;
}


std::vector> Detector::PostProcessing(const torch::Tensor& detections,
	float pad_w, float pad_h, float scale, const cv::Size& img_shape,
	float conf_thres, float iou_thres) {
	constexpr int item_attr_size = 5;
	int batch_size = detections.size(0);
	// number of classes, e.g. 80 for coco dataset
	auto num_classes = detections.size(2) - item_attr_size;

	// get candidates which object confidence > threshold
	auto conf_mask = detections.select(2, 4).ge(conf_thres).unsqueeze(2);

	std::vector> output;
	output.reserve(batch_size);

	// iterating all images in the batch
	for (int batch_i = 0; batch_i < batch_size; batch_i++) {
		// apply constrains to get filtered detections for current image
		auto det = torch::masked_select(detections[batch_i], conf_mask[batch_i]).view({ -1, num_classes + item_attr_size });

		// if none detections remain then skip and start to process next image
		if (0 == det.size(0)) {
			continue;
		}

		// compute overall score = obj_conf * cls_conf, similar to x[:, 5:] *= x[:, 4:5]
		det.slice(1, item_attr_size, item_attr_size + num_classes) *= det.select(1, 4).unsqueeze(1);

		// box (center x, center y, width, height) to (x1, y1, x2, y2)
		torch::Tensor box = xywh2xyxy(det.slice(1, 0, 4));

		// [best class only] get the max classes score at each result (e.g. elements 5-84)
		std::tuple max_classes = (torch::max)(det.slice(1, item_attr_size, item_attr_size + num_classes), 1);

		// class score
		auto max_conf_score = std::get<0>(max_classes);
		// index
		auto max_conf_index = std::get<1>(max_classes);

		max_conf_score = max_conf_score.to(torch::kFloat).unsqueeze(1);
		max_conf_index = max_conf_index.to(torch::kFloat).unsqueeze(1);

		// shape: n * 6, top-left x/y (0,1), bottom-right x/y (2,3), score(4), class index(5)
		det = torch::cat({ box.slice(1, 0, 4), max_conf_score, max_conf_index }, 1);

		// for batched NMS
		constexpr int max_wh = 4096;
		auto c = det.slice(1, item_attr_size, item_attr_size + 1) * max_wh;
		auto offset_box = det.slice(1, 0, 4) + c;

		std::vector offset_box_vec;
		std::vector score_vec;

		// copy data back to cpu
		auto offset_boxes_cpu = offset_box.cpu();
		auto det_cpu = det.cpu();
		const auto& det_cpu_array = det_cpu.accessor();

		// use accessor to access tensor elements efficiently
		Tensor2Detection(offset_boxes_cpu.accessor(), det_cpu_array, offset_box_vec, score_vec);

		// run NMS
		std::vector nms_indices;
		cv::dnn::NMSBoxes(offset_box_vec, score_vec, conf_thres, iou_thres, nms_indices);

		std::vector det_vec;
		for (int index : nms_indices) {
			Detection t;
			const auto& b = det_cpu_array[index];
			t.bbox =
				cv::Rect(cv::Point(b[Det::tl_x], b[Det::tl_y]),
					cv::Point(b[Det::br_x], b[Det::br_y]));
			t.score = det_cpu_array[index][Det::score];
			t.class_idx = det_cpu_array[index][Det::class_idx];
			det_vec.emplace_back(t);
		}

		ScaleCoordinates(det_vec, pad_w, pad_h, scale, img_shape);

		// save final detection for the current image
		output.emplace_back(det_vec);
	} // end of batch iterating

	return output;
}


void Detector::ScaleCoordinates(std::vector& data, float pad_w, float pad_h,
	float scale, const cv::Size& img_shape) {
	auto clip = [](float n, float lower, float upper) {
		return (std::max)(lower, (std::min)(n, upper));
	};

	std::vector detections;
	for (auto& i : data) {
		float x1 = (i.bbox.tl().x - pad_w) / scale;  // x padding
		float y1 = (i.bbox.tl().y - pad_h) / scale;  // y padding
		float x2 = (i.bbox.br().x - pad_w) / scale;  // x padding
		float y2 = (i.bbox.br().y - pad_h) / scale;  // y padding

		x1 = clip(x1, 0, (float)img_shape.width);
		y1 = clip(y1, 0, (float)img_shape.height);
		x2 = clip(x2, 0, (float)img_shape.width);
		y2 = clip(y2, 0, (float)img_shape.height);

		i.bbox = cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2));
	}
}


torch::Tensor Detector::xywh2xyxy(const torch::Tensor& x) {
	auto y = torch::zeros_like(x);
	// convert bounding box format from (center x, center y, width, height) to (x1, y1, x2, y2)
	y.select(1, Det::tl_x) = x.select(1, 0) - x.select(1, 2).div(2);
	y.select(1, Det::tl_y) = x.select(1, 1) - x.select(1, 3).div(2);
	y.select(1, Det::br_x) = x.select(1, 0) + x.select(1, 2).div(2);
	y.select(1, Det::br_y) = x.select(1, 1) + x.select(1, 3).div(2);
	return y;
}


void Detector::Tensor2Detection(const at::TensorAccessor& offset_boxes,
	const at::TensorAccessor& det,
	std::vector& offset_box_vec,
	std::vector& score_vec) {

	for (int i = 0; i < offset_boxes.size(0); i++) {
		offset_box_vec.emplace_back(
			cv::Rect(cv::Point(offset_boxes[i][Det::tl_x], offset_boxes[i][Det::tl_y]),
				cv::Point(offset_boxes[i][Det::br_x], offset_boxes[i][Det::br_y]))
		);
		score_vec.emplace_back(det[i][Det::score]);
	}
}

detector.h

# pragma once

#include 

#include 
//#torch/torch
#include "torch/torch.h"
#include 
#include 

#include 
#include 
#include 
#include 
#include 
#include "utils.h"

class Detector {
public:
	/***
	 * @brief constructor
	 * @param model_path - path of the TorchScript weight file
	 * @param device_type - inference with CPU/GPU
	 */
	Detector(const std::string& model_path, const torch::DeviceType& device_type);

	/***
	 * @brief inference module
	 * @param img - input image
	 * @param conf_threshold - confidence threshold
	 * @param iou_threshold - IoU threshold for nms
	 * @return detection result - bounding box, score, class index
	 */
	std::vector>
		Run(const cv::Mat& img, float conf_threshold, float iou_threshold);

private:
	/***
	 * @brief Padded resize
	 * @param src - input image
	 * @param dst - output image
	 * @param out_size - desired output size
	 * @return padding information - pad width, pad height and zoom scale
	 */
	static std::vector LetterboxImage(const cv::Mat& src, cv::Mat& dst, const cv::Size& out_size = cv::Size(640, 640));

	/***
	 * @brief Performs Non-Maximum Suppression (NMS) on inference results
	 * @note For 640x640 image, 640 / 32(max stride) = 20, sum up boxes from each yolo layer with stride (8, 16, 32) and
	 *       3 scales at each layer, we can get total number of boxes - (20x20 + 40x40 + 80x80) x 3 = 25200
	 * @param detections - inference results from the network, example [1, 25200, 85], 85 = 4(xywh) + 1(obj conf) + 80(class score)
	 * @param conf_thres - object confidence(objectness) threshold
	 * @param iou_thres - IoU threshold for NMS algorithm
	 * @return detections with shape: nx7 (batch_index, x1, y1, x2, y2, score, classification)
	 */
	static std::vector> PostProcessing(const torch::Tensor& detections,
		float pad_w, float pad_h, float scale, const cv::Size& img_shape,
		float conf_thres = 0.4, float iou_thres = 0.6);

	/***
	 * @brief Rescale coordinates to original input image
	 * @param data - detection result after inference and nms
	 * @param pad_w - width padding
	 * @param pad_h - height padding
	 * @param scale - zoom scale
	 * @param img_shape - original input image shape
	 */
	static void ScaleCoordinates(std::vector& data, float pad_w, float pad_h,
		float scale, const cv::Size& img_shape);

	/***
	 * @brief box (center x, center y, width, height) to (x1, y1, x2, y2)
	 * @param x - input box with xywh format
	 * @return box with xyxy format
	 */
	static torch::Tensor xywh2xyxy(const torch::Tensor& x);

	/***
	 * @brief Convert data from Tensors to vectors
	 */
	static void Tensor2Detection(const at::TensorAccessor& offset_boxes,
		const at::TensorAccessor& det,
		std::vector& offset_box_vec,
		std::vector& score_vec);

	torch::jit::script::Module module_;
	torch::Device device_;
	bool half_;
};

utils.h

#pragma once

enum Det {
    tl_x = 0,
    tl_y = 1,
    br_x = 2,
    br_y = 3,
    score = 4,
    class_idx = 5
};

struct Detection {
    cv::Rect bbox;
    float score;
    int class_idx;
};

cxxopts.hpp

/*

Copyright (c) 2014, 2015, 2016, 2017 Jarryd Beck

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

*/

#ifndef CXXOPTS_HPP_INCLUDED
#define CXXOPTS_HPP_INCLUDED

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#ifdef __cpp_lib_optional
#include 
#define CXXOPTS_HAS_OPTIONAL
#endif

#if __cplusplus >= 201603L
#define CXXOPTS_NODISCARD [[nodiscard]]
#else
#define CXXOPTS_NODISCARD
#endif

#ifndef CXXOPTS_VECTOR_DELIMITER
#define CXXOPTS_VECTOR_DELIMITER ','
#endif

#define CXXOPTS__VERSION_MAJOR 2
#define CXXOPTS__VERSION_MINOR 2
#define CXXOPTS__VERSION_PATCH 0

namespace cxxopts
{
  static constexpr struct {
    uint8_t major, minor, patch;
  } version = {
    CXXOPTS__VERSION_MAJOR,
    CXXOPTS__VERSION_MINOR,
    CXXOPTS__VERSION_PATCH
  };
} // namespace cxxopts

//when we ask cxxopts to use Unicode, help strings are processed using ICU,
//which results in the correct lengths being computed for strings when they
//are formatted for the help output
//it is necessary to make sure that  can be found by the
//compiler, and that icu-uc is linked in to the binary.

#ifdef CXXOPTS_USE_UNICODE
#include 

namespace cxxopts
{
  typedef icu::UnicodeString String;

  inline
  String
  toLocalString(std::string s)
  {
    return icu::UnicodeString::fromUTF8(std::move(s));
  }

  class UnicodeStringIterator : public
    std::iterator
  {
    public:

    UnicodeStringIterator(const icu::UnicodeString* string, int32_t pos)
    : s(string)
    , i(pos)
    {
    }

    value_type
    operator*() const
    {
      return s->char32At(i);
    }

    bool
    operator==(const UnicodeStringIterator& rhs) const
    {
      return s == rhs.s && i == rhs.i;
    }

    bool
    operator!=(const UnicodeStringIterator& rhs) const
    {
      return !(*this == rhs);
    }

    UnicodeStringIterator&
    operator++()
    {
      ++i;
      return *this;
    }

    UnicodeStringIterator
    operator+(int32_t v)
    {
      return UnicodeStringIterator(s, i + v);
    }

    private:
    const icu::UnicodeString* s;
    int32_t i;
  };

  inline
  String&
  stringAppend(String&s, String a)
  {
    return s.append(std::move(a));
  }

  inline
  String&
  stringAppend(String& s, int n, UChar32 c)
  {
    for (int i = 0; i != n; ++i)
    {
      s.append(c);
    }

    return s;
  }

  template 
  String&
  stringAppend(String& s, Iterator begin, Iterator end)
  {
    while (begin != end)
    {
      s.append(*begin);
      ++begin;
    }

    return s;
  }

  inline
  size_t
  stringLength(const String& s)
  {
    return s.length();
  }

  inline
  std::string
  toUTF8String(const String& s)
  {
    std::string result;
    s.toUTF8String(result);

    return result;
  }

  inline
  bool
  empty(const String& s)
  {
    return s.isEmpty();
  }
}

namespace std
{
  inline
  cxxopts::UnicodeStringIterator
  begin(const icu::UnicodeString& s)
  {
    return cxxopts::UnicodeStringIterator(&s, 0);
  }

  inline
  cxxopts::UnicodeStringIterator
  end(const icu::UnicodeString& s)
  {
    return cxxopts::UnicodeStringIterator(&s, s.length());
  }
}

//ifdef CXXOPTS_USE_UNICODE
#else

namespace cxxopts
{
  typedef std::string String;

  template 
  T
  toLocalString(T&& t)
  {
    return std::forward(t);
  }

  inline
  size_t
  stringLength(const String& s)
  {
    return s.length();
  }

  inline
  String&
  stringAppend(String&s, const String& a)
  {
    return s.append(a);
  }

  inline
  String&
  stringAppend(String& s, size_t n, char c)
  {
    return s.append(n, c);
  }

  template 
  String&
  stringAppend(String& s, Iterator begin, Iterator end)
  {
    return s.append(begin, end);
  }

  template 
  std::string
  toUTF8String(T&& t)
  {
    return std::forward(t);
  }

  inline
  bool
  empty(const std::string& s)
  {
    return s.empty();
  }
} // namespace cxxopts

//ifdef CXXOPTS_USE_UNICODE
#endif

namespace cxxopts
{
  namespace
  {
#ifdef _WIN32
    const std::string LQUOTE("\'");
    const std::string RQUOTE("\'");
#else
    const std::string LQUOTE("‘");
    const std::string RQUOTE("’");
#endif
  } // namespace

  class Value : public std::enable_shared_from_this
  {
    public:

    virtual ~Value() = default;

    virtual
    std::shared_ptr
    clone() const = 0;

    virtual void
    parse(const std::string& text) const = 0;

    virtual void
    parse() const = 0;

    virtual bool
    has_default() const = 0;

    virtual bool
    is_container() const = 0;

    virtual bool
    has_implicit() const = 0;

    virtual std::string
    get_default_value() const = 0;

    virtual std::string
    get_implicit_value() const = 0;

    virtual std::shared_ptr
    default_value(const std::string& value) = 0;

    virtual std::shared_ptr
    implicit_value(const std::string& value) = 0;

    virtual std::shared_ptr
    no_implicit_value() = 0;

    virtual bool
    is_boolean() const = 0;
  };

  class OptionException : public std::exception
  {
    public:
    explicit OptionException(std::string  message)
    : m_message(std::move(message))
    {
    }

    CXXOPTS_NODISCARD
    const char*
    what() const noexcept override
    {
      return m_message.c_str();
    }

    private:
    std::string m_message;
  };

  class OptionSpecException : public OptionException
  {
    public:

    explicit OptionSpecException(const std::string& message)
    : OptionException(message)
    {
    }
  };

  class OptionParseException : public OptionException
  {
    public:
    explicit OptionParseException(const std::string& message)
    : OptionException(message)
    {
    }
  };

  class option_exists_error : public OptionSpecException
  {
    public:
    explicit option_exists_error(const std::string& option)
    : OptionSpecException("Option " + LQUOTE + option + RQUOTE + " already exists")
    {
    }
  };

  class invalid_option_format_error : public OptionSpecException
  {
    public:
    explicit invalid_option_format_error(const std::string& format)
    : OptionSpecException("Invalid option format " + LQUOTE + format + RQUOTE)
    {
    }
  };

  class option_syntax_exception : public OptionParseException {
    public:
    explicit option_syntax_exception(const std::string& text)
    : OptionParseException("Argument " + LQUOTE + text + RQUOTE +
        " starts with a - but has incorrect syntax")
    {
    }
  };

  class option_not_exists_exception : public OptionParseException
  {
    public:
    explicit option_not_exists_exception(const std::string& option)
    : OptionParseException("Option " + LQUOTE + option + RQUOTE + " does not exist")
    {
    }
  };

  class missing_argument_exception : public OptionParseException
  {
    public:
    explicit missing_argument_exception(const std::string& option)
    : OptionParseException(
        "Option " + LQUOTE + option + RQUOTE + " is missing an argument"
      )
    {
    }
  };

  class option_requires_argument_exception : public OptionParseException
  {
    public:
    explicit option_requires_argument_exception(const std::string& option)
    : OptionParseException(
        "Option " + LQUOTE + option + RQUOTE + " requires an argument"
      )
    {
    }
  };

  class option_not_has_argument_exception : public OptionParseException
  {
    public:
    option_not_has_argument_exception
    (
      const std::string& option,
      const std::string& arg
    )
    : OptionParseException(
        "Option " + LQUOTE + option + RQUOTE +
        " does not take an argument, but argument " +
        LQUOTE + arg + RQUOTE + " given"
      )
    {
    }
  };

  class option_not_present_exception : public OptionParseException
  {
    public:
    explicit option_not_present_exception(const std::string& option)
    : OptionParseException("Option " + LQUOTE + option + RQUOTE + " not present")
    {
    }
  };

  class option_has_no_value_exception : public OptionException
  {
    public:
    explicit option_has_no_value_exception(const std::string& option)
    : OptionException(
        option.empty() ?
        ("Option " + LQUOTE + option + RQUOTE + " has no value") :
        "Option has no value")
    {
    }
  };

  class argument_incorrect_type : public OptionParseException
  {
    public:
    explicit argument_incorrect_type
    (
      const std::string& arg
    )
    : OptionParseException(
        "Argument " + LQUOTE + arg + RQUOTE + " failed to parse"
      )
    {
    }
  };

  class option_required_exception : public OptionParseException
  {
    public:
    explicit option_required_exception(const std::string& option)
    : OptionParseException(
        "Option " + LQUOTE + option + RQUOTE + " is required but not present"
      )
    {
    }
  };

  template 
  void throw_or_mimic(const std::string& text)
  {
    static_assert(std::is_base_of::value,
                  "throw_or_mimic only works on std::exception and "
                  "deriving classes");

#ifndef CXXOPTS_NO_EXCEPTIONS
    // If CXXOPTS_NO_EXCEPTIONS is not defined, just throw
    throw T{text};
#else
    // Otherwise manually instantiate the exception, print what() to stderr,
    // and exit
    T exception{text};
    std::cerr << exception.what() << std::endl;
    std::exit(EXIT_FAILURE);
#endif
  }

  namespace values
  {
    namespace
    {
      std::basic_regex integer_pattern
        ("(-)?(0x)?([0-9a-zA-Z]+)|((0x)?0)");
      std::basic_regex truthy_pattern
        ("(t|T)(rue)?|1");
      std::basic_regex falsy_pattern
        ("(f|F)(alse)?|0");
    } // namespace

    namespace detail
    {
      template 
      struct SignedCheck;

      template 
      struct SignedCheck
      {
        template 
        void
        operator()(bool negative, U u, const std::string& text)
        {
          if (negative)
          {
            if (u > static_cast((std::numeric_limits::min)()))
            {
              throw_or_mimic(text);
            }
          }
          else
          {
            if (u > static_cast((std::numeric_limits::max)()))
            {
              throw_or_mimic(text);
            }
          }
        }
      };

      template 
      struct SignedCheck
      {
        template 
        void
        operator()(bool, U, const std::string&) {}
      };

      template 
      void
      check_signed_range(bool negative, U value, const std::string& text)
      {
        SignedCheck::is_signed>()(negative, value, text);
      }
    } // namespace detail

    template 
    R
    checked_negate(T&& t, const std::string&, std::true_type)
    {
      // if we got to here, then `t` is a positive number that fits into
      // `R`. So to avoid MSVC C4146, we first cast it to `R`.
      // See https://github.com/jarro2783/cxxopts/issues/62 for more details.
      return static_cast(-static_cast(t-1)-1);
    }

    template 
    T
    checked_negate(T&& t, const std::string& text, std::false_type)
    {
      throw_or_mimic(text);
      return t;
    }

    template 
    void
    integer_parser(const std::string& text, T& value)
    {
      std::smatch match;
      std::regex_match(text, match, integer_pattern);

      if (match.length() == 0)
      {
        throw_or_mimic(text);
      }

      if (match.length(4) > 0)
      {
        value = 0;
        return;
      }

      using US = typename std::make_unsigned::type;

      constexpr bool is_signed = std::numeric_limits::is_signed;
      const bool negative = match.length(1) > 0;
      const uint8_t base = match.length(2) > 0 ? 16 : 10;

      auto value_match = match[3];

      US result = 0;

      for (auto iter = value_match.first; iter != value_match.second; ++iter)
      {
        US digit = 0;

        if (*iter >= '0' && *iter <= '9')
        {
          digit = static_cast(*iter - '0');
        }
        else if (base == 16 && *iter >= 'a' && *iter <= 'f')
        {
          digit = static_cast(*iter - 'a' + 10);
        }
        else if (base == 16 && *iter >= 'A' && *iter <= 'F')
        {
          digit = static_cast(*iter - 'A' + 10);
        }
        else
        {
          throw_or_mimic(text);
        }

        const US next = static_cast(result * base + digit);
        if (result > next)
        {
          throw_or_mimic(text);
        }

        result = next;
      }

      detail::check_signed_range(negative, result, text);

      if (negative)
      {
        value = checked_negate(result,
          text,
          std::integral_constant());
      }
      else
      {
        value = static_cast(result);
      }
    }

    template 
    void stringstream_parser(const std::string& text, T& value)
    {
      std::stringstream in(text);
      in >> value;
      if (!in) {
        throw_or_mimic(text);
      }
    }

    inline
    void
    parse_value(const std::string& text, uint8_t& value)
    {
      integer_parser(text, value);
    }

    inline
    void
    parse_value(const std::string& text, int8_t& value)
    {
      integer_parser(text, value);
    }

    inline
    void
    parse_value(const std::string& text, uint16_t& value)
    {
      integer_parser(text, value);
    }

    inline
    void
    parse_value(const std::string& text, int16_t& value)
    {
      integer_parser(text, value);
    }

    inline
    void
    parse_value(const std::string& text, uint32_t& value)
    {
      integer_parser(text, value);
    }

    inline
    void
    parse_value(const std::string& text, int32_t& value)
    {
      integer_parser(text, value);
    }

    inline
    void
    parse_value(const std::string& text, uint64_t& value)
    {
      integer_parser(text, value);
    }

    inline
    void
    parse_value(const std::string& text, int64_t& value)
    {
      integer_parser(text, value);
    }

    inline
    void
    parse_value(const std::string& text, bool& value)
    {
      std::smatch result;
      std::regex_match(text, result, truthy_pattern);

      if (!result.empty())
      {
        value = true;
        return;
      }

      std::regex_match(text, result, falsy_pattern);
      if (!result.empty())
      {
        value = false;
        return;
      }

      throw_or_mimic(text);
    }

    inline
    void
    parse_value(const std::string& text, std::string& value)
    {
      value = text;
    }

    // The fallback parser. It uses the stringstream parser to parse all types
    // that have not been overloaded explicitly.  It has to be placed in the
    // source code before all other more specialized templates.
    template 
    void
    parse_value(const std::string& text, T& value) {
      stringstream_parser(text, value);
    }

    template 
    void
    parse_value(const std::string& text, std::vector& value)
    {
      std::stringstream in(text);
      std::string token;
      while(!in.eof() && std::getline(in, token, CXXOPTS_VECTOR_DELIMITER)) {
        T v;
        parse_value(token, v);
        value.emplace_back(std::move(v));
      }
    }

#ifdef CXXOPTS_HAS_OPTIONAL
    template 
    void
    parse_value(const std::string& text, std::optional& value)
    {
      T result;
      parse_value(text, result);
      value = std::move(result);
    }
#endif

    inline
    void parse_value(const std::string& text, char& c)
    {
      if (text.length() != 1)
      {
        throw_or_mimic(text);
      }

      c = text[0];
    }

    template 
    struct type_is_container
    {
      static constexpr bool value = false;
    };

    template 
    struct type_is_container>
    {
      static constexpr bool value = true;
    };

    template 
    class abstract_value : public Value
    {
      using Self = abstract_value;

      public:
      abstract_value()
      : m_result(std::make_shared())
      , m_store(m_result.get())
      {
      }

      explicit abstract_value(T* t)
      : m_store(t)
      {
      }

      ~abstract_value() override = default;

      abstract_value(const abstract_value& rhs)
      {
        if (rhs.m_result)
        {
          m_result = std::make_shared();
          m_store = m_result.get();
        }
        else
        {
          m_store = rhs.m_store;
        }

        m_default = rhs.m_default;
        m_implicit = rhs.m_implicit;
        m_default_value = rhs.m_default_value;
        m_implicit_value = rhs.m_implicit_value;
      }

      void
      parse(const std::string& text) const override
      {
        parse_value(text, *m_store);
      }

      bool
      is_container() const override
      {
        return type_is_container::value;
      }

      void
      parse() const override
      {
        parse_value(m_default_value, *m_store);
      }

      bool
      has_default() const override
      {
        return m_default;
      }

      bool
      has_implicit() const override
      {
        return m_implicit;
      }

      std::shared_ptr
      default_value(const std::string& value) override
      {
        m_default = true;
        m_default_value = value;
        return shared_from_this();
      }

      std::shared_ptr
      implicit_value(const std::string& value) override
      {
        m_implicit = true;
        m_implicit_value = value;
        return shared_from_this();
      }

      std::shared_ptr
      no_implicit_value() override
      {
        m_implicit = false;
        return shared_from_this();
      }

      std::string
      get_default_value() const override
      {
        return m_default_value;
      }

      std::string
      get_implicit_value() const override
      {
        return m_implicit_value;
      }

      bool
      is_boolean() const override
      {
        return std::is_same::value;
      }

      const T&
      get() const
      {
        if (m_store == nullptr)
        {
          return *m_result;
        }
        return *m_store;
      }

      protected:
      std::shared_ptr m_result;
      T* m_store;

      bool m_default = false;
      bool m_implicit = false;

      std::string m_default_value;
      std::string m_implicit_value;
    };

    template 
    class standard_value : public abstract_value
    {
      public:
      using abstract_value::abstract_value;

      CXXOPTS_NODISCARD
      std::shared_ptr
      clone() const
      {
        return std::make_shared>(*this);
      }
    };

    template <>
    class standard_value : public abstract_value
    {
      public:
      ~standard_value() override = default;

      standard_value()
      {
        set_default_and_implicit();
      }

      explicit standard_value(bool* b)
      : abstract_value(b)
      {
        set_default_and_implicit();
      }

      std::shared_ptr
      clone() const override
      {
        return std::make_shared>(*this);
      }

      private:

      void
      set_default_and_implicit()
      {
        m_default = true;
        m_default_value = "false";
        m_implicit = true;
        m_implicit_value = "true";
      }
    };
  } // namespace values

  template 
  std::shared_ptr
  value()
  {
    return std::make_shared>();
  }

  template 
  std::shared_ptr
  value(T& t)
  {
    return std::make_shared>(&t);
  }

  class OptionAdder;

  class OptionDetails
  {
    public:
    OptionDetails
    (
      std::string short_,
      std::string long_,
      String desc,
      std::shared_ptr val
    )
    : m_short(std::move(short_))
    , m_long(std::move(long_))
    , m_desc(std::move(desc))
    , m_value(std::move(val))
    , m_count(0)
    {
    }

    OptionDetails(const OptionDetails& rhs)
    : m_desc(rhs.m_desc)
    , m_count(rhs.m_count)
    {
      m_value = rhs.m_value->clone();
    }

    OptionDetails(OptionDetails&& rhs) = default;

    CXXOPTS_NODISCARD
    const String&
    description() const
    {
      return m_desc;
    }

    CXXOPTS_NODISCARD
    const Value&
    value() const {
        return *m_value;
    }

    CXXOPTS_NODISCARD
    std::shared_ptr
    make_storage() const
    {
      return m_value->clone();
    }

    CXXOPTS_NODISCARD
    const std::string&
    short_name() const
    {
      return m_short;
    }

    CXXOPTS_NODISCARD
    const std::string&
    long_name() const
    {
      return m_long;
    }

    private:
    std::string m_short;
    std::string m_long;
    String m_desc;
    std::shared_ptr m_value;
    int m_count;
  };

  struct HelpOptionDetails
  {
    std::string s;
    std::string l;
    String desc;
    bool has_default;
    std::string default_value;
    bool has_implicit;
    std::string implicit_value;
    std::string arg_help;
    bool is_container;
    bool is_boolean;
  };

  struct HelpGroupDetails
  {
    std::string name;
    std::string description;
    std::vector options;
  };

  class OptionValue
  {
    public:
    void
    parse
    (
      const std::shared_ptr& details,
      const std::string& text
    )
    {
      ensure_value(details);
      ++m_count;
      m_value->parse(text);
      m_long_name = &details->long_name();
    }

    void
    parse_default(const std::shared_ptr& details)
    {
      ensure_value(details);
      m_default = true;
      m_long_name = &details->long_name();
      m_value->parse();
    }

    CXXOPTS_NODISCARD
    size_t
    count() const noexcept
    {
      return m_count;
    }

    // TODO: maybe default options should count towards the number of arguments
    CXXOPTS_NODISCARD
    bool
    has_default() const noexcept
    {
      return m_default;
    }

    template 
    const T&
    as() const
    {
      if (m_value == nullptr) {
          throw_or_mimic(
              m_long_name == nullptr ? "" : *m_long_name);
      }

#ifdef CXXOPTS_NO_RTTI
      return static_cast&>(*m_value).get();
#else
      return dynamic_cast&>(*m_value).get();
#endif
    }

    private:
    void
    ensure_value(const std::shared_ptr& details)
    {
      if (m_value == nullptr)
      {
        m_value = details->make_storage();
      }
    }

    const std::string* m_long_name = nullptr;
        // Holding this pointer is safe, since OptionValue's only exist in key-value pairs,
        // where the key has the string we point to.
    std::shared_ptr m_value;
    size_t m_count = 0;
    bool m_default = false;
  };

  class KeyValue
  {
    public:
    KeyValue(std::string key_, std::string value_)
    : m_key(std::move(key_))
    , m_value(std::move(value_))
    {
    }

    CXXOPTS_NODISCARD
    const std::string&
    key() const
    {
      return m_key;
    }

    CXXOPTS_NODISCARD
    const std::string&
    value() const
    {
      return m_value;
    }

    template 
    T
    as() const
    {
      T result;
      values::parse_value(m_value, result);
      return result;
    }

    private:
    std::string m_key;
    std::string m_value;
  };

  class ParseResult
  {
    public:

    ParseResult(
      std::shared_ptr<
        std::unordered_map>
      >,
      std::vector,
      bool allow_unrecognised,
      int&, const char**&);

    size_t
    count(const std::string& o) const
    {
      auto iter = m_options->find(o);
      if (iter == m_options->end())
      {
        return 0;
      }

      auto riter = m_results.find(iter->second);

      return riter->second.count();
    }

    const OptionValue&
    operator[](const std::string& option) const
    {
      auto iter = m_options->find(option);

      if (iter == m_options->end())
      {
        throw_or_mimic(option);
      }

      auto riter = m_results.find(iter->second);

      return riter->second;
    }

    const std::vector&
    arguments() const
    {
      return m_sequential;
    }

    private:

    void
    parse(int& argc, const char**& argv);

    void
    add_to_option(const std::string& option, const std::string& arg);

    bool
    consume_positional(const std::string& a);

    void
    parse_option
    (
      const std::shared_ptr& value,
      const std::string& name,
      const std::string& arg = ""
    );

    void
    parse_default(const std::shared_ptr& details);

    void
    checked_parse_arg
    (
      int argc,
      const char* argv[],
      int& current,
      const std::shared_ptr& value,
      const std::string& name
    );

    const std::shared_ptr<
      std::unordered_map>
    > m_options;
    std::vector m_positional;
    std::vector::iterator m_next_positional;
    std::unordered_set m_positional_set;
    std::unordered_map, OptionValue> m_results;

    bool m_allow_unrecognised;

    std::vector m_sequential;
  };

  struct Option
  {
    Option
    (
      std::string opts,
      std::string desc,
      std::shared_ptr  value = ::cxxopts::value(),
      std::string arg_help = ""
    )
    : opts_(std::move(opts))
    , desc_(std::move(desc))
    , value_(std::move(value))
    , arg_help_(std::move(arg_help))
    {
    }

    std::string opts_;
    std::string desc_;
    std::shared_ptr value_;
    std::string arg_help_;
  };

  class Options
  {
    using OptionMap = std::unordered_map>;
    public:

    explicit Options(std::string program, std::string help_string = "")
    : m_program(std::move(program))
    , m_help_string(toLocalString(std::move(help_string)))
    , m_custom_help("[OPTION...]")
    , m_positional_help("positional parameters")
    , m_show_positional(false)
    , m_allow_unrecognised(false)
    , m_options(std::make_shared())
    , m_next_positional(m_positional.end())
    {
    }

    Options&
    positional_help(std::string help_text)
    {
      m_positional_help = std::move(help_text);
      return *this;
    }

    Options&
    custom_help(std::string help_text)
    {
      m_custom_help = std::move(help_text);
      return *this;
    }

    Options&
    show_positional_help()
    {
      m_show_positional = true;
      return *this;
    }

    Options&
    allow_unrecognised_options()
    {
      m_allow_unrecognised = true;
      return *this;
    }

    ParseResult
    parse(int& argc, const char**& argv);

    OptionAdder
    add_options(std::string group = "");

    void
    add_options
    (
      const std::string& group,
      std::initializer_list

属性:

【C++ yolov5 libtorch】GPU windows测试_第1张图片

include:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include
D:\Software\?\cudaopencv\opencv4.5.0\build\install\include
C:\Program Files\PCL 1.10.0\3rdParty\Eigen\eigen3
D:\Software\?\cudaopencv\opencv4.5.0\build\install\include\opencv2

 连接器-命令行

/INCLUDE:?warp_size@cuda@at@@YAHXZ 

连接器-输入

asmjit.lib
torch_cuda_cpp.lib
c10.lib
c10_cuda.lib
caffe2_nvrtc.lib
clog.lib
cpuinfo.lib
dnnl.lib
kineto.lib
fbgemm.lib
libprotobuf.lib
libprotobuf-lite.lib
libprotoc.lib
pthreadpool.lib
torch.lib
torch_cpu.lib
torch_cuda.lib
torch_cuda_cu.lib
XNNPACK.lib

C/C++ 常规 附加包含目录:

D:\Software\vs2019+pcl+opencv\libtorch\include
D:\Software\vs2019+pcl+opencv\libtorch\include\torch\csrc\api\include

C/C++ 所有选项符合模式-是 (/permissive-)

不使用预编译头

库目录:D:\Software\vs2019+pcl+opencv\cudaopencv\opencv4.5.0\build\install\x64\vc16\lib

系统变量:

D:\Software\vs2019+pcl+opencv\libtorch\lib

D:\Software\vs2019+pcl+opencv\cudaopencv\opencv4.5.0\build\install\x64\vc16\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin

 D:\Software\vs2019+pcl+opencv\libtorch\bin

你可能感兴趣的:(C++,opencv,深度学习,c++,YOLOV5,GPU)