yolov5LoadAndDetect.cpp
#include
#include
#include
#include "include/detector.h"
#include "include/cxxopts.hpp"
using namespace std;
std::vector LoadNames(const std::string& path) {
// load class names
std::vector class_names;
std::ifstream infile(path);
if (infile.is_open()) {
std::string line;
while (getline(infile, line)) {
class_names.emplace_back(line);
}
infile.close();
}
else {
std::cerr << "Error loading the class names!\n";
}
return class_names;
}
void Demo(cv::Mat& img,
const std::vector>& detections,
const std::vector& class_names,
bool label = true) {
if (!detections.empty()) {
for (const auto& detection : detections[0]) {
const auto& box = detection.bbox;
float score = detection.score;
int class_idx = detection.class_idx;
cv::rectangle(img, box, cv::Scalar(0, 0, 255), 2);
if (label) {
std::stringstream ss;
ss << std::fixed << std::setprecision(2) << score;
std::string s = class_names[class_idx] + " " + ss.str();
auto font_face = cv::FONT_HERSHEY_DUPLEX;
auto font_scale = 1.0;
int thickness = 1;
int baseline = 0;
auto s_size = cv::getTextSize(s, font_face, font_scale, thickness, &baseline);
cv::rectangle(img,
cv::Point(box.tl().x, box.tl().y - s_size.height - 5),
cv::Point(box.tl().x + s_size.width, box.tl().y),
cv::Scalar(0, 0, 255), -1);
cv::putText(img, s, cv::Point(box.tl().x, box.tl().y - 5),
font_face, font_scale, cv::Scalar(255, 255, 255), thickness);
}
}
}
//cv::namedWindow("Result", cv::WINDOW_AUTOSIZE);
cv::resize(img, img, cv::Size(717, 600));// cv::Size(956, 800) cv::Size(717, 600)
cv::imshow("Result", img);
cv::waitKey(0);
}
int main(int argc, const char* argv[]) {
cxxopts::Options parser(argv[0], "A LibTorch inference implementation of the yolov5");
// TODO: add other args
parser.allow_unrecognised_options().add_options()
("weights", "model.torchscript.pt path", cxxopts::value()->default_value("weights/best.torchscript"))//torchscript格式 已验证
("source", "source", cxxopts::value()->default_value("./test/1.bmp"))//bus.jpgv
("conf-thres", "object confidence threshold", cxxopts::value()->default_value("0.4"))
("iou-thres", "IOU threshold for NMS", cxxopts::value()->default_value("0.5"))
("gpu", "Enable cuda device or cpu", cxxopts::value()->default_value("true"))
("view-img", "display results", cxxopts::value()->default_value("true"))
("h,help", "Print usage");
auto opt = parser.parse(argc, argv);
if (opt.count("help")) {
std::cout << parser.help() << std::endl;
exit(0);
}
// check if gpu flag is set
bool is_gpu = opt["gpu"].as();
// set device type - CPU/GPU
torch::DeviceType device_type; //libtorch 版本应为GPU
if (torch::cuda::is_available() && is_gpu) {// 链接器-命令行 /INCLUDE:?warp_size@cuda@at@@YAHXZ /INCLUDE:?searchsorted_cuda@native@at@@YA?AVTensor@2@AEBV32@0_N1@Z
device_type = torch::kCUDA;//重新编译 pytorch 使得编译时CUDA能够与运行时CUDA保持一致 https://blog.csdn.net/qq_36038453/article/details/120278523
}
else {
device_type = torch::kCPU;
}
std::cout << "Device available :" << torch::cuda::is_available() << std::endl;
// load class names from dataset for visualization
std::vector class_names = LoadNames("weights/block.txt");
if (class_names.empty()) {
return -1;
}
// load network
std::string weights = opt["weights"].as();
auto detector = Detector(weights, device_type);
// load input image
std::string source = opt["source"].as();
cv::Mat img = cv::imread(source);
if (img.empty()) {
std::cerr << "Error loading the image!\n";
return -1;
}
// run once to warm up
std::cout << "Run once on empty image" << std::endl;
auto temp_img = cv::Mat::zeros(img.rows, img.cols, CV_32FC3);//
detector.Run(temp_img, 1.0f, 1.0f);//temp_imag 是黑色
// set up threshold
float conf_thres = opt["conf-thres"].as();
float iou_thres = opt["iou-thres"].as();
// inference
auto result = detector.Run(img, conf_thres, iou_thres);
// visualize detections
if (opt["view-img"].as()) {
Demo(img, result, class_names);
}
cv::destroyAllWindows();
return 0;
}
detector.cpp
#include "detector.h"
Detector::Detector(const std::string& model_path, const torch::DeviceType& device_type) : device_(device_type) {
try {
// Deserialize the ScriptModule from a file using torch::jit::load().
LoadLibraryA("ATen_cuda.dll");
LoadLibraryA("c10_cuda.dll");
LoadLibraryA("torch_cuda.dll");
LoadLibraryA("torchvision.dll");
module_ = torch::jit::load(model_path);
}
catch (const c10::Error& e) {
std::cerr << "Error loading the model!\n" << e.what();
std::exit(EXIT_FAILURE);
}
half_ = (device_ != torch::kCPU);
module_.to(device_);
if (half_) {
module_.to(torch::kHalf);
}
module_.eval();
}
std::vector>
Detector::Run(const cv::Mat& img, float conf_threshold, float iou_threshold) {
torch::NoGradGuard no_grad;
std::cout << "----------New Frame----------" << std::endl;
// TODO: check_img_size()
/*** Pre-process ***/
auto start = std::chrono::high_resolution_clock::now();
// keep the original image for visualization purpose
cv::Mat img_input = img.clone();
std::vector pad_info = LetterboxImage(img_input, img_input, cv::Size(416, 416));//cv::Size(640, 640)
const float pad_w = pad_info[0];
const float pad_h = pad_info[1];
const float scale = pad_info[2];
cv::cvtColor(img_input, img_input, cv::COLOR_BGR2RGB); // BGR -> RGB 旧的cv::COLOR_BGR2RGB
img_input.convertTo(img_input, CV_32FC3, 1.0f / 255.0f); // normalization 1/255
auto tensor_img = torch::from_blob(img_input.data, { 1, img_input.rows, img_input.cols, img_input.channels() }).to(device_);
tensor_img = tensor_img.permute({ 0, 3, 1, 2 }).contiguous(); // BHWC -> BCHW (Batch, Channel, Height, Width)
if (half_) {
tensor_img = tensor_img.to(torch::kHalf);
}
std::vector inputs;
inputs.emplace_back(tensor_img);
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast(end - start);
// It should be known that it takes longer time at first time
std::cout << "pre-process takes : " << duration.count() << " ms" << std::endl;
/*** Inference ***/
// TODO: add synchronize point
start = std::chrono::high_resolution_clock::now();
// inference
torch::jit::IValue output = module_.forward(inputs);//
//auto output = module_.forward(inputs);
//auto detections = module_.forward(inputs).toTensor();
end = std::chrono::high_resolution_clock::now();
duration = std::chrono::duration_cast(end - start);
// It should be known that it takes longer time at first time
std::cout << "inference takes : " << duration.count() << " ms" << std::endl;
/*** Post-process ***/
start = std::chrono::high_resolution_clock::now();
auto detections = output.toTuple()->elements()[0].toTensor();
// result: n * 7
// batch index(0), top-left x/y (1,2), bottom-right x/y (3,4), score(5), class id(6)
auto result = PostProcessing(detections, pad_w, pad_h, scale, img.size(), conf_threshold, iou_threshold);
end = std::chrono::high_resolution_clock::now();
duration = std::chrono::duration_cast(end - start);
// It should be known that it takes longer time at first time
std::cout << "post-process takes : " << duration.count() << " ms" << std::endl;
return result;
}
std::vector Detector::LetterboxImage(const cv::Mat& src, cv::Mat& dst, const cv::Size& out_size) {
auto in_h = static_cast(src.rows);
auto in_w = static_cast(src.cols);
float out_h = out_size.height;
float out_w = out_size.width;
float scale = (std::min)(out_w / in_w, out_h / in_h);
int mid_h = static_cast(in_h * scale);
int mid_w = static_cast(in_w * scale);
cv::resize(src, dst, cv::Size(mid_w, mid_h));
int top = (static_cast(out_h) - mid_h) / 2;
int down = (static_cast(out_h) - mid_h + 1) / 2;
int left = (static_cast(out_w) - mid_w) / 2;
int right = (static_cast(out_w) - mid_w + 1) / 2;
cv::copyMakeBorder(dst, dst, top, down, left, right, cv::BORDER_CONSTANT, cv::Scalar(114, 114, 114));
std::vector pad_info{ static_cast(left), static_cast(top), scale };
return pad_info;
}
std::vector> Detector::PostProcessing(const torch::Tensor& detections,
float pad_w, float pad_h, float scale, const cv::Size& img_shape,
float conf_thres, float iou_thres) {
constexpr int item_attr_size = 5;
int batch_size = detections.size(0);
// number of classes, e.g. 80 for coco dataset
auto num_classes = detections.size(2) - item_attr_size;
// get candidates which object confidence > threshold
auto conf_mask = detections.select(2, 4).ge(conf_thres).unsqueeze(2);
std::vector> output;
output.reserve(batch_size);
// iterating all images in the batch
for (int batch_i = 0; batch_i < batch_size; batch_i++) {
// apply constrains to get filtered detections for current image
auto det = torch::masked_select(detections[batch_i], conf_mask[batch_i]).view({ -1, num_classes + item_attr_size });
// if none detections remain then skip and start to process next image
if (0 == det.size(0)) {
continue;
}
// compute overall score = obj_conf * cls_conf, similar to x[:, 5:] *= x[:, 4:5]
det.slice(1, item_attr_size, item_attr_size + num_classes) *= det.select(1, 4).unsqueeze(1);
// box (center x, center y, width, height) to (x1, y1, x2, y2)
torch::Tensor box = xywh2xyxy(det.slice(1, 0, 4));
// [best class only] get the max classes score at each result (e.g. elements 5-84)
std::tuple max_classes = (torch::max)(det.slice(1, item_attr_size, item_attr_size + num_classes), 1);
// class score
auto max_conf_score = std::get<0>(max_classes);
// index
auto max_conf_index = std::get<1>(max_classes);
max_conf_score = max_conf_score.to(torch::kFloat).unsqueeze(1);
max_conf_index = max_conf_index.to(torch::kFloat).unsqueeze(1);
// shape: n * 6, top-left x/y (0,1), bottom-right x/y (2,3), score(4), class index(5)
det = torch::cat({ box.slice(1, 0, 4), max_conf_score, max_conf_index }, 1);
// for batched NMS
constexpr int max_wh = 4096;
auto c = det.slice(1, item_attr_size, item_attr_size + 1) * max_wh;
auto offset_box = det.slice(1, 0, 4) + c;
std::vector offset_box_vec;
std::vector score_vec;
// copy data back to cpu
auto offset_boxes_cpu = offset_box.cpu();
auto det_cpu = det.cpu();
const auto& det_cpu_array = det_cpu.accessor();
// use accessor to access tensor elements efficiently
Tensor2Detection(offset_boxes_cpu.accessor(), det_cpu_array, offset_box_vec, score_vec);
// run NMS
std::vector nms_indices;
cv::dnn::NMSBoxes(offset_box_vec, score_vec, conf_thres, iou_thres, nms_indices);
std::vector det_vec;
for (int index : nms_indices) {
Detection t;
const auto& b = det_cpu_array[index];
t.bbox =
cv::Rect(cv::Point(b[Det::tl_x], b[Det::tl_y]),
cv::Point(b[Det::br_x], b[Det::br_y]));
t.score = det_cpu_array[index][Det::score];
t.class_idx = det_cpu_array[index][Det::class_idx];
det_vec.emplace_back(t);
}
ScaleCoordinates(det_vec, pad_w, pad_h, scale, img_shape);
// save final detection for the current image
output.emplace_back(det_vec);
} // end of batch iterating
return output;
}
void Detector::ScaleCoordinates(std::vector& data, float pad_w, float pad_h,
float scale, const cv::Size& img_shape) {
auto clip = [](float n, float lower, float upper) {
return (std::max)(lower, (std::min)(n, upper));
};
std::vector detections;
for (auto& i : data) {
float x1 = (i.bbox.tl().x - pad_w) / scale; // x padding
float y1 = (i.bbox.tl().y - pad_h) / scale; // y padding
float x2 = (i.bbox.br().x - pad_w) / scale; // x padding
float y2 = (i.bbox.br().y - pad_h) / scale; // y padding
x1 = clip(x1, 0, (float)img_shape.width);
y1 = clip(y1, 0, (float)img_shape.height);
x2 = clip(x2, 0, (float)img_shape.width);
y2 = clip(y2, 0, (float)img_shape.height);
i.bbox = cv::Rect(cv::Point(x1, y1), cv::Point(x2, y2));
}
}
torch::Tensor Detector::xywh2xyxy(const torch::Tensor& x) {
auto y = torch::zeros_like(x);
// convert bounding box format from (center x, center y, width, height) to (x1, y1, x2, y2)
y.select(1, Det::tl_x) = x.select(1, 0) - x.select(1, 2).div(2);
y.select(1, Det::tl_y) = x.select(1, 1) - x.select(1, 3).div(2);
y.select(1, Det::br_x) = x.select(1, 0) + x.select(1, 2).div(2);
y.select(1, Det::br_y) = x.select(1, 1) + x.select(1, 3).div(2);
return y;
}
void Detector::Tensor2Detection(const at::TensorAccessor& offset_boxes,
const at::TensorAccessor& det,
std::vector& offset_box_vec,
std::vector& score_vec) {
for (int i = 0; i < offset_boxes.size(0); i++) {
offset_box_vec.emplace_back(
cv::Rect(cv::Point(offset_boxes[i][Det::tl_x], offset_boxes[i][Det::tl_y]),
cv::Point(offset_boxes[i][Det::br_x], offset_boxes[i][Det::br_y]))
);
score_vec.emplace_back(det[i][Det::score]);
}
}
detector.h
# pragma once
#include
#include
//#torch/torch
#include "torch/torch.h"
#include
#include
#include
#include
#include
#include
#include
#include "utils.h"
class Detector {
public:
/***
* @brief constructor
* @param model_path - path of the TorchScript weight file
* @param device_type - inference with CPU/GPU
*/
Detector(const std::string& model_path, const torch::DeviceType& device_type);
/***
* @brief inference module
* @param img - input image
* @param conf_threshold - confidence threshold
* @param iou_threshold - IoU threshold for nms
* @return detection result - bounding box, score, class index
*/
std::vector>
Run(const cv::Mat& img, float conf_threshold, float iou_threshold);
private:
/***
* @brief Padded resize
* @param src - input image
* @param dst - output image
* @param out_size - desired output size
* @return padding information - pad width, pad height and zoom scale
*/
static std::vector LetterboxImage(const cv::Mat& src, cv::Mat& dst, const cv::Size& out_size = cv::Size(640, 640));
/***
* @brief Performs Non-Maximum Suppression (NMS) on inference results
* @note For 640x640 image, 640 / 32(max stride) = 20, sum up boxes from each yolo layer with stride (8, 16, 32) and
* 3 scales at each layer, we can get total number of boxes - (20x20 + 40x40 + 80x80) x 3 = 25200
* @param detections - inference results from the network, example [1, 25200, 85], 85 = 4(xywh) + 1(obj conf) + 80(class score)
* @param conf_thres - object confidence(objectness) threshold
* @param iou_thres - IoU threshold for NMS algorithm
* @return detections with shape: nx7 (batch_index, x1, y1, x2, y2, score, classification)
*/
static std::vector> PostProcessing(const torch::Tensor& detections,
float pad_w, float pad_h, float scale, const cv::Size& img_shape,
float conf_thres = 0.4, float iou_thres = 0.6);
/***
* @brief Rescale coordinates to original input image
* @param data - detection result after inference and nms
* @param pad_w - width padding
* @param pad_h - height padding
* @param scale - zoom scale
* @param img_shape - original input image shape
*/
static void ScaleCoordinates(std::vector& data, float pad_w, float pad_h,
float scale, const cv::Size& img_shape);
/***
* @brief box (center x, center y, width, height) to (x1, y1, x2, y2)
* @param x - input box with xywh format
* @return box with xyxy format
*/
static torch::Tensor xywh2xyxy(const torch::Tensor& x);
/***
* @brief Convert data from Tensors to vectors
*/
static void Tensor2Detection(const at::TensorAccessor& offset_boxes,
const at::TensorAccessor& det,
std::vector& offset_box_vec,
std::vector& score_vec);
torch::jit::script::Module module_;
torch::Device device_;
bool half_;
};
utils.h
#pragma once
enum Det {
tl_x = 0,
tl_y = 1,
br_x = 2,
br_y = 3,
score = 4,
class_idx = 5
};
struct Detection {
cv::Rect bbox;
float score;
int class_idx;
};
cxxopts.hpp
/*
Copyright (c) 2014, 2015, 2016, 2017 Jarryd Beck
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifndef CXXOPTS_HPP_INCLUDED
#define CXXOPTS_HPP_INCLUDED
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef __cpp_lib_optional
#include
#define CXXOPTS_HAS_OPTIONAL
#endif
#if __cplusplus >= 201603L
#define CXXOPTS_NODISCARD [[nodiscard]]
#else
#define CXXOPTS_NODISCARD
#endif
#ifndef CXXOPTS_VECTOR_DELIMITER
#define CXXOPTS_VECTOR_DELIMITER ','
#endif
#define CXXOPTS__VERSION_MAJOR 2
#define CXXOPTS__VERSION_MINOR 2
#define CXXOPTS__VERSION_PATCH 0
namespace cxxopts
{
static constexpr struct {
uint8_t major, minor, patch;
} version = {
CXXOPTS__VERSION_MAJOR,
CXXOPTS__VERSION_MINOR,
CXXOPTS__VERSION_PATCH
};
} // namespace cxxopts
//when we ask cxxopts to use Unicode, help strings are processed using ICU,
//which results in the correct lengths being computed for strings when they
//are formatted for the help output
//it is necessary to make sure that can be found by the
//compiler, and that icu-uc is linked in to the binary.
#ifdef CXXOPTS_USE_UNICODE
#include
namespace cxxopts
{
typedef icu::UnicodeString String;
inline
String
toLocalString(std::string s)
{
return icu::UnicodeString::fromUTF8(std::move(s));
}
class UnicodeStringIterator : public
std::iterator
{
public:
UnicodeStringIterator(const icu::UnicodeString* string, int32_t pos)
: s(string)
, i(pos)
{
}
value_type
operator*() const
{
return s->char32At(i);
}
bool
operator==(const UnicodeStringIterator& rhs) const
{
return s == rhs.s && i == rhs.i;
}
bool
operator!=(const UnicodeStringIterator& rhs) const
{
return !(*this == rhs);
}
UnicodeStringIterator&
operator++()
{
++i;
return *this;
}
UnicodeStringIterator
operator+(int32_t v)
{
return UnicodeStringIterator(s, i + v);
}
private:
const icu::UnicodeString* s;
int32_t i;
};
inline
String&
stringAppend(String&s, String a)
{
return s.append(std::move(a));
}
inline
String&
stringAppend(String& s, int n, UChar32 c)
{
for (int i = 0; i != n; ++i)
{
s.append(c);
}
return s;
}
template
String&
stringAppend(String& s, Iterator begin, Iterator end)
{
while (begin != end)
{
s.append(*begin);
++begin;
}
return s;
}
inline
size_t
stringLength(const String& s)
{
return s.length();
}
inline
std::string
toUTF8String(const String& s)
{
std::string result;
s.toUTF8String(result);
return result;
}
inline
bool
empty(const String& s)
{
return s.isEmpty();
}
}
namespace std
{
inline
cxxopts::UnicodeStringIterator
begin(const icu::UnicodeString& s)
{
return cxxopts::UnicodeStringIterator(&s, 0);
}
inline
cxxopts::UnicodeStringIterator
end(const icu::UnicodeString& s)
{
return cxxopts::UnicodeStringIterator(&s, s.length());
}
}
//ifdef CXXOPTS_USE_UNICODE
#else
namespace cxxopts
{
typedef std::string String;
template
T
toLocalString(T&& t)
{
return std::forward(t);
}
inline
size_t
stringLength(const String& s)
{
return s.length();
}
inline
String&
stringAppend(String&s, const String& a)
{
return s.append(a);
}
inline
String&
stringAppend(String& s, size_t n, char c)
{
return s.append(n, c);
}
template
String&
stringAppend(String& s, Iterator begin, Iterator end)
{
return s.append(begin, end);
}
template
std::string
toUTF8String(T&& t)
{
return std::forward(t);
}
inline
bool
empty(const std::string& s)
{
return s.empty();
}
} // namespace cxxopts
//ifdef CXXOPTS_USE_UNICODE
#endif
namespace cxxopts
{
namespace
{
#ifdef _WIN32
const std::string LQUOTE("\'");
const std::string RQUOTE("\'");
#else
const std::string LQUOTE("‘");
const std::string RQUOTE("’");
#endif
} // namespace
class Value : public std::enable_shared_from_this
{
public:
virtual ~Value() = default;
virtual
std::shared_ptr
clone() const = 0;
virtual void
parse(const std::string& text) const = 0;
virtual void
parse() const = 0;
virtual bool
has_default() const = 0;
virtual bool
is_container() const = 0;
virtual bool
has_implicit() const = 0;
virtual std::string
get_default_value() const = 0;
virtual std::string
get_implicit_value() const = 0;
virtual std::shared_ptr
default_value(const std::string& value) = 0;
virtual std::shared_ptr
implicit_value(const std::string& value) = 0;
virtual std::shared_ptr
no_implicit_value() = 0;
virtual bool
is_boolean() const = 0;
};
class OptionException : public std::exception
{
public:
explicit OptionException(std::string message)
: m_message(std::move(message))
{
}
CXXOPTS_NODISCARD
const char*
what() const noexcept override
{
return m_message.c_str();
}
private:
std::string m_message;
};
class OptionSpecException : public OptionException
{
public:
explicit OptionSpecException(const std::string& message)
: OptionException(message)
{
}
};
class OptionParseException : public OptionException
{
public:
explicit OptionParseException(const std::string& message)
: OptionException(message)
{
}
};
class option_exists_error : public OptionSpecException
{
public:
explicit option_exists_error(const std::string& option)
: OptionSpecException("Option " + LQUOTE + option + RQUOTE + " already exists")
{
}
};
class invalid_option_format_error : public OptionSpecException
{
public:
explicit invalid_option_format_error(const std::string& format)
: OptionSpecException("Invalid option format " + LQUOTE + format + RQUOTE)
{
}
};
class option_syntax_exception : public OptionParseException {
public:
explicit option_syntax_exception(const std::string& text)
: OptionParseException("Argument " + LQUOTE + text + RQUOTE +
" starts with a - but has incorrect syntax")
{
}
};
class option_not_exists_exception : public OptionParseException
{
public:
explicit option_not_exists_exception(const std::string& option)
: OptionParseException("Option " + LQUOTE + option + RQUOTE + " does not exist")
{
}
};
class missing_argument_exception : public OptionParseException
{
public:
explicit missing_argument_exception(const std::string& option)
: OptionParseException(
"Option " + LQUOTE + option + RQUOTE + " is missing an argument"
)
{
}
};
class option_requires_argument_exception : public OptionParseException
{
public:
explicit option_requires_argument_exception(const std::string& option)
: OptionParseException(
"Option " + LQUOTE + option + RQUOTE + " requires an argument"
)
{
}
};
class option_not_has_argument_exception : public OptionParseException
{
public:
option_not_has_argument_exception
(
const std::string& option,
const std::string& arg
)
: OptionParseException(
"Option " + LQUOTE + option + RQUOTE +
" does not take an argument, but argument " +
LQUOTE + arg + RQUOTE + " given"
)
{
}
};
class option_not_present_exception : public OptionParseException
{
public:
explicit option_not_present_exception(const std::string& option)
: OptionParseException("Option " + LQUOTE + option + RQUOTE + " not present")
{
}
};
class option_has_no_value_exception : public OptionException
{
public:
explicit option_has_no_value_exception(const std::string& option)
: OptionException(
option.empty() ?
("Option " + LQUOTE + option + RQUOTE + " has no value") :
"Option has no value")
{
}
};
class argument_incorrect_type : public OptionParseException
{
public:
explicit argument_incorrect_type
(
const std::string& arg
)
: OptionParseException(
"Argument " + LQUOTE + arg + RQUOTE + " failed to parse"
)
{
}
};
class option_required_exception : public OptionParseException
{
public:
explicit option_required_exception(const std::string& option)
: OptionParseException(
"Option " + LQUOTE + option + RQUOTE + " is required but not present"
)
{
}
};
template
void throw_or_mimic(const std::string& text)
{
static_assert(std::is_base_of::value,
"throw_or_mimic only works on std::exception and "
"deriving classes");
#ifndef CXXOPTS_NO_EXCEPTIONS
// If CXXOPTS_NO_EXCEPTIONS is not defined, just throw
throw T{text};
#else
// Otherwise manually instantiate the exception, print what() to stderr,
// and exit
T exception{text};
std::cerr << exception.what() << std::endl;
std::exit(EXIT_FAILURE);
#endif
}
namespace values
{
namespace
{
std::basic_regex integer_pattern
("(-)?(0x)?([0-9a-zA-Z]+)|((0x)?0)");
std::basic_regex truthy_pattern
("(t|T)(rue)?|1");
std::basic_regex falsy_pattern
("(f|F)(alse)?|0");
} // namespace
namespace detail
{
template
struct SignedCheck;
template
struct SignedCheck
{
template
void
operator()(bool negative, U u, const std::string& text)
{
if (negative)
{
if (u > static_cast((std::numeric_limits::min)()))
{
throw_or_mimic(text);
}
}
else
{
if (u > static_cast((std::numeric_limits::max)()))
{
throw_or_mimic(text);
}
}
}
};
template
struct SignedCheck
{
template
void
operator()(bool, U, const std::string&) {}
};
template
void
check_signed_range(bool negative, U value, const std::string& text)
{
SignedCheck::is_signed>()(negative, value, text);
}
} // namespace detail
template
R
checked_negate(T&& t, const std::string&, std::true_type)
{
// if we got to here, then `t` is a positive number that fits into
// `R`. So to avoid MSVC C4146, we first cast it to `R`.
// See https://github.com/jarro2783/cxxopts/issues/62 for more details.
return static_cast(-static_cast(t-1)-1);
}
template
T
checked_negate(T&& t, const std::string& text, std::false_type)
{
throw_or_mimic(text);
return t;
}
template
void
integer_parser(const std::string& text, T& value)
{
std::smatch match;
std::regex_match(text, match, integer_pattern);
if (match.length() == 0)
{
throw_or_mimic(text);
}
if (match.length(4) > 0)
{
value = 0;
return;
}
using US = typename std::make_unsigned::type;
constexpr bool is_signed = std::numeric_limits::is_signed;
const bool negative = match.length(1) > 0;
const uint8_t base = match.length(2) > 0 ? 16 : 10;
auto value_match = match[3];
US result = 0;
for (auto iter = value_match.first; iter != value_match.second; ++iter)
{
US digit = 0;
if (*iter >= '0' && *iter <= '9')
{
digit = static_cast(*iter - '0');
}
else if (base == 16 && *iter >= 'a' && *iter <= 'f')
{
digit = static_cast(*iter - 'a' + 10);
}
else if (base == 16 && *iter >= 'A' && *iter <= 'F')
{
digit = static_cast(*iter - 'A' + 10);
}
else
{
throw_or_mimic(text);
}
const US next = static_cast(result * base + digit);
if (result > next)
{
throw_or_mimic(text);
}
result = next;
}
detail::check_signed_range(negative, result, text);
if (negative)
{
value = checked_negate(result,
text,
std::integral_constant());
}
else
{
value = static_cast(result);
}
}
template
void stringstream_parser(const std::string& text, T& value)
{
std::stringstream in(text);
in >> value;
if (!in) {
throw_or_mimic(text);
}
}
inline
void
parse_value(const std::string& text, uint8_t& value)
{
integer_parser(text, value);
}
inline
void
parse_value(const std::string& text, int8_t& value)
{
integer_parser(text, value);
}
inline
void
parse_value(const std::string& text, uint16_t& value)
{
integer_parser(text, value);
}
inline
void
parse_value(const std::string& text, int16_t& value)
{
integer_parser(text, value);
}
inline
void
parse_value(const std::string& text, uint32_t& value)
{
integer_parser(text, value);
}
inline
void
parse_value(const std::string& text, int32_t& value)
{
integer_parser(text, value);
}
inline
void
parse_value(const std::string& text, uint64_t& value)
{
integer_parser(text, value);
}
inline
void
parse_value(const std::string& text, int64_t& value)
{
integer_parser(text, value);
}
inline
void
parse_value(const std::string& text, bool& value)
{
std::smatch result;
std::regex_match(text, result, truthy_pattern);
if (!result.empty())
{
value = true;
return;
}
std::regex_match(text, result, falsy_pattern);
if (!result.empty())
{
value = false;
return;
}
throw_or_mimic(text);
}
inline
void
parse_value(const std::string& text, std::string& value)
{
value = text;
}
// The fallback parser. It uses the stringstream parser to parse all types
// that have not been overloaded explicitly. It has to be placed in the
// source code before all other more specialized templates.
template
void
parse_value(const std::string& text, T& value) {
stringstream_parser(text, value);
}
template
void
parse_value(const std::string& text, std::vector& value)
{
std::stringstream in(text);
std::string token;
while(!in.eof() && std::getline(in, token, CXXOPTS_VECTOR_DELIMITER)) {
T v;
parse_value(token, v);
value.emplace_back(std::move(v));
}
}
#ifdef CXXOPTS_HAS_OPTIONAL
template
void
parse_value(const std::string& text, std::optional& value)
{
T result;
parse_value(text, result);
value = std::move(result);
}
#endif
inline
void parse_value(const std::string& text, char& c)
{
if (text.length() != 1)
{
throw_or_mimic(text);
}
c = text[0];
}
template
struct type_is_container
{
static constexpr bool value = false;
};
template
struct type_is_container>
{
static constexpr bool value = true;
};
template
class abstract_value : public Value
{
using Self = abstract_value;
public:
abstract_value()
: m_result(std::make_shared())
, m_store(m_result.get())
{
}
explicit abstract_value(T* t)
: m_store(t)
{
}
~abstract_value() override = default;
abstract_value(const abstract_value& rhs)
{
if (rhs.m_result)
{
m_result = std::make_shared();
m_store = m_result.get();
}
else
{
m_store = rhs.m_store;
}
m_default = rhs.m_default;
m_implicit = rhs.m_implicit;
m_default_value = rhs.m_default_value;
m_implicit_value = rhs.m_implicit_value;
}
void
parse(const std::string& text) const override
{
parse_value(text, *m_store);
}
bool
is_container() const override
{
return type_is_container::value;
}
void
parse() const override
{
parse_value(m_default_value, *m_store);
}
bool
has_default() const override
{
return m_default;
}
bool
has_implicit() const override
{
return m_implicit;
}
std::shared_ptr
default_value(const std::string& value) override
{
m_default = true;
m_default_value = value;
return shared_from_this();
}
std::shared_ptr
implicit_value(const std::string& value) override
{
m_implicit = true;
m_implicit_value = value;
return shared_from_this();
}
std::shared_ptr
no_implicit_value() override
{
m_implicit = false;
return shared_from_this();
}
std::string
get_default_value() const override
{
return m_default_value;
}
std::string
get_implicit_value() const override
{
return m_implicit_value;
}
bool
is_boolean() const override
{
return std::is_same::value;
}
const T&
get() const
{
if (m_store == nullptr)
{
return *m_result;
}
return *m_store;
}
protected:
std::shared_ptr m_result;
T* m_store;
bool m_default = false;
bool m_implicit = false;
std::string m_default_value;
std::string m_implicit_value;
};
template
class standard_value : public abstract_value
{
public:
using abstract_value::abstract_value;
CXXOPTS_NODISCARD
std::shared_ptr
clone() const
{
return std::make_shared>(*this);
}
};
template <>
class standard_value : public abstract_value
{
public:
~standard_value() override = default;
standard_value()
{
set_default_and_implicit();
}
explicit standard_value(bool* b)
: abstract_value(b)
{
set_default_and_implicit();
}
std::shared_ptr
clone() const override
{
return std::make_shared>(*this);
}
private:
void
set_default_and_implicit()
{
m_default = true;
m_default_value = "false";
m_implicit = true;
m_implicit_value = "true";
}
};
} // namespace values
template
std::shared_ptr
value()
{
return std::make_shared>();
}
template
std::shared_ptr
value(T& t)
{
return std::make_shared>(&t);
}
class OptionAdder;
class OptionDetails
{
public:
OptionDetails
(
std::string short_,
std::string long_,
String desc,
std::shared_ptr val
)
: m_short(std::move(short_))
, m_long(std::move(long_))
, m_desc(std::move(desc))
, m_value(std::move(val))
, m_count(0)
{
}
OptionDetails(const OptionDetails& rhs)
: m_desc(rhs.m_desc)
, m_count(rhs.m_count)
{
m_value = rhs.m_value->clone();
}
OptionDetails(OptionDetails&& rhs) = default;
CXXOPTS_NODISCARD
const String&
description() const
{
return m_desc;
}
CXXOPTS_NODISCARD
const Value&
value() const {
return *m_value;
}
CXXOPTS_NODISCARD
std::shared_ptr
make_storage() const
{
return m_value->clone();
}
CXXOPTS_NODISCARD
const std::string&
short_name() const
{
return m_short;
}
CXXOPTS_NODISCARD
const std::string&
long_name() const
{
return m_long;
}
private:
std::string m_short;
std::string m_long;
String m_desc;
std::shared_ptr m_value;
int m_count;
};
struct HelpOptionDetails
{
std::string s;
std::string l;
String desc;
bool has_default;
std::string default_value;
bool has_implicit;
std::string implicit_value;
std::string arg_help;
bool is_container;
bool is_boolean;
};
struct HelpGroupDetails
{
std::string name;
std::string description;
std::vector options;
};
class OptionValue
{
public:
void
parse
(
const std::shared_ptr& details,
const std::string& text
)
{
ensure_value(details);
++m_count;
m_value->parse(text);
m_long_name = &details->long_name();
}
void
parse_default(const std::shared_ptr& details)
{
ensure_value(details);
m_default = true;
m_long_name = &details->long_name();
m_value->parse();
}
CXXOPTS_NODISCARD
size_t
count() const noexcept
{
return m_count;
}
// TODO: maybe default options should count towards the number of arguments
CXXOPTS_NODISCARD
bool
has_default() const noexcept
{
return m_default;
}
template
const T&
as() const
{
if (m_value == nullptr) {
throw_or_mimic(
m_long_name == nullptr ? "" : *m_long_name);
}
#ifdef CXXOPTS_NO_RTTI
return static_cast&>(*m_value).get();
#else
return dynamic_cast&>(*m_value).get();
#endif
}
private:
void
ensure_value(const std::shared_ptr& details)
{
if (m_value == nullptr)
{
m_value = details->make_storage();
}
}
const std::string* m_long_name = nullptr;
// Holding this pointer is safe, since OptionValue's only exist in key-value pairs,
// where the key has the string we point to.
std::shared_ptr m_value;
size_t m_count = 0;
bool m_default = false;
};
class KeyValue
{
public:
KeyValue(std::string key_, std::string value_)
: m_key(std::move(key_))
, m_value(std::move(value_))
{
}
CXXOPTS_NODISCARD
const std::string&
key() const
{
return m_key;
}
CXXOPTS_NODISCARD
const std::string&
value() const
{
return m_value;
}
template
T
as() const
{
T result;
values::parse_value(m_value, result);
return result;
}
private:
std::string m_key;
std::string m_value;
};
class ParseResult
{
public:
ParseResult(
std::shared_ptr<
std::unordered_map>
>,
std::vector,
bool allow_unrecognised,
int&, const char**&);
size_t
count(const std::string& o) const
{
auto iter = m_options->find(o);
if (iter == m_options->end())
{
return 0;
}
auto riter = m_results.find(iter->second);
return riter->second.count();
}
const OptionValue&
operator[](const std::string& option) const
{
auto iter = m_options->find(option);
if (iter == m_options->end())
{
throw_or_mimic(option);
}
auto riter = m_results.find(iter->second);
return riter->second;
}
const std::vector&
arguments() const
{
return m_sequential;
}
private:
void
parse(int& argc, const char**& argv);
void
add_to_option(const std::string& option, const std::string& arg);
bool
consume_positional(const std::string& a);
void
parse_option
(
const std::shared_ptr& value,
const std::string& name,
const std::string& arg = ""
);
void
parse_default(const std::shared_ptr& details);
void
checked_parse_arg
(
int argc,
const char* argv[],
int& current,
const std::shared_ptr& value,
const std::string& name
);
const std::shared_ptr<
std::unordered_map>
> m_options;
std::vector m_positional;
std::vector::iterator m_next_positional;
std::unordered_set m_positional_set;
std::unordered_map, OptionValue> m_results;
bool m_allow_unrecognised;
std::vector m_sequential;
};
struct Option
{
Option
(
std::string opts,
std::string desc,
std::shared_ptr value = ::cxxopts::value(),
std::string arg_help = ""
)
: opts_(std::move(opts))
, desc_(std::move(desc))
, value_(std::move(value))
, arg_help_(std::move(arg_help))
{
}
std::string opts_;
std::string desc_;
std::shared_ptr value_;
std::string arg_help_;
};
class Options
{
using OptionMap = std::unordered_map>;
public:
explicit Options(std::string program, std::string help_string = "")
: m_program(std::move(program))
, m_help_string(toLocalString(std::move(help_string)))
, m_custom_help("[OPTION...]")
, m_positional_help("positional parameters")
, m_show_positional(false)
, m_allow_unrecognised(false)
, m_options(std::make_shared())
, m_next_positional(m_positional.end())
{
}
Options&
positional_help(std::string help_text)
{
m_positional_help = std::move(help_text);
return *this;
}
Options&
custom_help(std::string help_text)
{
m_custom_help = std::move(help_text);
return *this;
}
Options&
show_positional_help()
{
m_show_positional = true;
return *this;
}
Options&
allow_unrecognised_options()
{
m_allow_unrecognised = true;
return *this;
}
ParseResult
parse(int& argc, const char**& argv);
OptionAdder
add_options(std::string group = "");
void
add_options
(
const std::string& group,
std::initializer_list options
);
void
add_option
(
const std::string& group,
const Option& option
);
void
add_option
(
const std::string& group,
const std::string& s,
const std::string& l,
std::string desc,
const std::shared_ptr& value,
std::string arg_help
);
//parse positional arguments into the given option
void
parse_positional(std::string option);
void
parse_positional(std::vector options);
void
parse_positional(std::initializer_list options);
template
void
parse_positional(Iterator begin, Iterator end) {
parse_positional(std::vector{begin, end});
}
std::string
help(const std::vector& groups = {}) const;
std::vector
groups() const;
const HelpGroupDetails&
group_help(const std::string& group) const;
private:
void
add_one_option
(
const std::string& option,
const std::shared_ptr& details
);
String
help_one_group(const std::string& group) const;
void
generate_group_help
(
String& result,
const std::vector& groups
) const;
void
generate_all_groups_help(String& result) const;
std::string m_program;
String m_help_string;
std::string m_custom_help;
std::string m_positional_help;
bool m_show_positional;
bool m_allow_unrecognised;
std::shared_ptr m_options;
std::vector m_positional;
std::vector::iterator m_next_positional;
std::unordered_set m_positional_set;
//mapping from groups to help options
std::map m_help;
};
class OptionAdder
{
public:
OptionAdder(Options& options, std::string group)
: m_options(options), m_group(std::move(group))
{
}
OptionAdder&
operator()
(
const std::string& opts,
const std::string& desc,
const std::shared_ptr& value
= ::cxxopts::value(),
std::string arg_help = ""
);
private:
Options& m_options;
std::string m_group;
};
namespace
{
constexpr int OPTION_LONGEST = 30;
constexpr int OPTION_DESC_GAP = 2;
std::basic_regex option_matcher
("--([[:alnum:]][-_[:alnum:]]+)(=(.*))?|-([[:alnum:]]+)");
std::basic_regex option_specifier
("(([[:alnum:]]),)?[ ]*([[:alnum:]][-_[:alnum:]]*)?");
String
format_option
(
const HelpOptionDetails& o
)
{
const auto& s = o.s;
const auto& l = o.l;
String result = " ";
if (!s.empty())
{
result += "-" + toLocalString(s);
if (!l.empty())
{
result += ",";
}
}
else
{
result += " ";
}
if (!l.empty())
{
result += " --" + toLocalString(l);
}
auto arg = !o.arg_help.empty() ? toLocalString(o.arg_help) : "arg";
if (!o.is_boolean)
{
if (o.has_implicit)
{
result += " [=" + arg + "(=" + toLocalString(o.implicit_value) + ")]";
}
else
{
result += " " + arg;
}
}
return result;
}
String
format_description
(
const HelpOptionDetails& o,
size_t start,
size_t width
)
{
auto desc = o.desc;
if (o.has_default && (!o.is_boolean || o.default_value != "false"))
{
if(!o.default_value.empty())
{
desc += toLocalString(" (default: " + o.default_value + ")");
}
else
{
desc += toLocalString(" (default: \"\")");
}
}
String result;
auto current = std::begin(desc);
auto startLine = current;
auto lastSpace = current;
auto size = size_t{};
while (current != std::end(desc))
{
if (*current == ' ')
{
lastSpace = current;
}
if (*current == '\n')
{
startLine = current + 1;
lastSpace = startLine;
}
else if (size > width)
{
if (lastSpace == startLine)
{
stringAppend(result, startLine, current + 1);
stringAppend(result, "\n");
stringAppend(result, start, ' ');
startLine = current + 1;
lastSpace = startLine;
}
else
{
stringAppend(result, startLine, lastSpace);
stringAppend(result, "\n");
stringAppend(result, start, ' ');
startLine = lastSpace + 1;
lastSpace = startLine;
}
size = 0;
}
else
{
++size;
}
++current;
}
//append whatever is left
stringAppend(result, startLine, current);
return result;
}
} // namespace
inline
ParseResult::ParseResult
(
std::shared_ptr<
std::unordered_map>
> options,
std::vector positional,
bool allow_unrecognised,
int& argc, const char**& argv
)
: m_options(std::move(options))
, m_positional(std::move(positional))
, m_next_positional(m_positional.begin())
, m_allow_unrecognised(allow_unrecognised)
{
parse(argc, argv);
}
inline
void
Options::add_options
(
const std::string &group,
std::initializer_list options
)
{
OptionAdder option_adder(*this, group);
for (const auto &option: options)
{
option_adder(option.opts_, option.desc_, option.value_, option.arg_help_);
}
}
inline
OptionAdder
Options::add_options(std::string group)
{
return OptionAdder(*this, std::move(group));
}
inline
OptionAdder&
OptionAdder::operator()
(
const std::string& opts,
const std::string& desc,
const std::shared_ptr& value,
std::string arg_help
)
{
std::match_results result;
std::regex_match(opts.c_str(), result, option_specifier);
if (result.empty())
{
throw_or_mimic(opts);
}
const auto& short_match = result[2];
const auto& long_match = result[3];
if (!short_match.length() && !long_match.length())
{
throw_or_mimic(opts);
} else if (long_match.length() == 1 && short_match.length())
{
throw_or_mimic(opts);
}
auto option_names = []
(
const std::sub_match& short_,
const std::sub_match& long_
)
{
if (long_.length() == 1)
{
return std::make_tuple(long_.str(), short_.str());
}
return std::make_tuple(short_.str(), long_.str());
}(short_match, long_match);
m_options.add_option
(
m_group,
std::get<0>(option_names),
std::get<1>(option_names),
desc,
value,
std::move(arg_help)
);
return *this;
}
inline
void
ParseResult::parse_default(const std::shared_ptr& details)
{
m_results[details].parse_default(details);
}
inline
void
ParseResult::parse_option
(
const std::shared_ptr& value,
const std::string& /*name*/,
const std::string& arg
)
{
auto& result = m_results[value];
result.parse(value, arg);
m_sequential.emplace_back(value->long_name(), arg);
}
inline
void
ParseResult::checked_parse_arg
(
int argc,
const char* argv[],
int& current,
const std::shared_ptr& value,
const std::string& name
)
{
if (current + 1 >= argc)
{
if (value->value().has_implicit())
{
parse_option(value, name, value->value().get_implicit_value());
}
else
{
throw_or_mimic(name);
}
}
else
{
if (value->value().has_implicit())
{
parse_option(value, name, value->value().get_implicit_value());
}
else
{
parse_option(value, name, argv[current + 1]);
++current;
}
}
}
inline
void
ParseResult::add_to_option(const std::string& option, const std::string& arg)
{
auto iter = m_options->find(option);
if (iter == m_options->end())
{
throw_or_mimic(option);
}
parse_option(iter->second, option, arg);
}
inline
bool
ParseResult::consume_positional(const std::string& a)
{
while (m_next_positional != m_positional.end())
{
auto iter = m_options->find(*m_next_positional);
if (iter != m_options->end())
{
auto& result = m_results[iter->second];
if (!iter->second->value().is_container())
{
if (result.count() == 0)
{
add_to_option(*m_next_positional, a);
++m_next_positional;
return true;
}
++m_next_positional;
continue;
}
add_to_option(*m_next_positional, a);
return true;
}
throw_or_mimic(*m_next_positional);
}
return false;
}
inline
void
Options::parse_positional(std::string option)
{
parse_positional(std::vector{std::move(option)});
}
inline
void
Options::parse_positional(std::vector options)
{
m_positional = std::move(options);
m_next_positional = m_positional.begin();
m_positional_set.insert(m_positional.begin(), m_positional.end());
}
inline
void
Options::parse_positional(std::initializer_list options)
{
parse_positional(std::vector(options));
}
inline
ParseResult
Options::parse(int& argc, const char**& argv)
{
ParseResult result(m_options, m_positional, m_allow_unrecognised, argc, argv);
return result;
}
inline
void
ParseResult::parse(int& argc, const char**& argv)
{
int current = 1;
int nextKeep = 1;
bool consume_remaining = false;
while (current != argc)
{
if (strcmp(argv[current], "--") == 0)
{
consume_remaining = true;
++current;
break;
}
std::match_results result;
std::regex_match(argv[current], result, option_matcher);
if (result.empty())
{
//not a flag
// but if it starts with a `-`, then it's an error
if (argv[current][0] == '-' && argv[current][1] != '\0') {
if (!m_allow_unrecognised) {
throw_or_mimic(argv[current]);
}
}
//if true is returned here then it was consumed, otherwise it is
//ignored
if (consume_positional(argv[current]))
{
}
else
{
argv[nextKeep] = argv[current];
++nextKeep;
}
//if we return from here then it was parsed successfully, so continue
}
else
{
//short or long option?
if (result[4].length() != 0)
{
const std::string& s = result[4];
for (std::size_t i = 0; i != s.size(); ++i)
{
std::string name(1, s[i]);
auto iter = m_options->find(name);
if (iter == m_options->end())
{
if (m_allow_unrecognised)
{
continue;
}
//error
throw_or_mimic(name);
}
auto value = iter->second;
if (i + 1 == s.size())
{
//it must be the last argument
checked_parse_arg(argc, argv, current, value, name);
}
else if (value->value().has_implicit())
{
parse_option(value, name, value->value().get_implicit_value());
}
else
{
//error
throw_or_mimic(name);
}
}
}
else if (result[1].length() != 0)
{
const std::string& name = result[1];
auto iter = m_options->find(name);
if (iter == m_options->end())
{
if (m_allow_unrecognised)
{
// keep unrecognised options in argument list, skip to next argument
argv[nextKeep] = argv[current];
++nextKeep;
++current;
continue;
}
//error
throw_or_mimic(name);
}
auto opt = iter->second;
//equals provided for long option?
if (result[2].length() != 0)
{
//parse the option given
parse_option(opt, name, result[3]);
}
else
{
//parse the next argument
checked_parse_arg(argc, argv, current, opt, name);
}
}
}
++current;
}
for (auto& opt : *m_options)
{
auto& detail = opt.second;
const auto& value = detail->value();
auto& store = m_results[detail];
if(value.has_default() && !store.count() && !store.has_default()){
parse_default(detail);
}
}
if (consume_remaining)
{
while (current < argc)
{
if (!consume_positional(argv[current])) {
break;
}
++current;
}
//adjust argv for any that couldn't be swallowed
while (current != argc) {
argv[nextKeep] = argv[current];
++nextKeep;
++current;
}
}
argc = nextKeep;
}
inline
void
Options::add_option
(
const std::string& group,
const Option& option
)
{
add_options(group, {option});
}
inline
void
Options::add_option
(
const std::string& group,
const std::string& s,
const std::string& l,
std::string desc,
const std::shared_ptr& value,
std::string arg_help
)
{
auto stringDesc = toLocalString(std::move(desc));
auto option = std::make_shared(s, l, stringDesc, value);
if (!s.empty())
{
add_one_option(s, option);
}
if (!l.empty())
{
add_one_option(l, option);
}
//add the help details
auto& options = m_help[group];
options.options.emplace_back(HelpOptionDetails{s, l, stringDesc,
value->has_default(), value->get_default_value(),
value->has_implicit(), value->get_implicit_value(),
std::move(arg_help),
value->is_container(),
value->is_boolean()});
}
inline
void
Options::add_one_option
(
const std::string& option,
const std::shared_ptr& details
)
{
auto in = m_options->emplace(option, details);
if (!in.second)
{
throw_or_mimic(option);
}
}
inline
String
Options::help_one_group(const std::string& g) const
{
using OptionHelp = std::vector>;
auto group = m_help.find(g);
if (group == m_help.end())
{
return "";
}
OptionHelp format;
size_t longest = 0;
String result;
if (!g.empty())
{
result += toLocalString(" " + g + " options:\n");
}
for (const auto& o : group->second.options)
{
if (m_positional_set.find(o.l) != m_positional_set.end() &&
!m_show_positional)
{
continue;
}
auto s = format_option(o);
longest = (std::max)(longest, stringLength(s));
format.push_back(std::make_pair(s, String()));
}
longest = (std::min)(longest, static_cast(OPTION_LONGEST));
//widest allowed description
auto allowed = size_t{76} - longest - OPTION_DESC_GAP;
auto fiter = format.begin();
for (const auto& o : group->second.options)
{
if (m_positional_set.find(o.l) != m_positional_set.end() &&
!m_show_positional)
{
continue;
}
auto d = format_description(o, longest + OPTION_DESC_GAP, allowed);
result += fiter->first;
if (stringLength(fiter->first) > longest)
{
result += '\n';
result += toLocalString(std::string(longest + OPTION_DESC_GAP, ' '));
}
else
{
result += toLocalString(std::string(longest + OPTION_DESC_GAP -
stringLength(fiter->first),
' '));
}
result += d;
result += '\n';
++fiter;
}
return result;
}
inline
void
Options::generate_group_help
(
String& result,
const std::vector& print_groups
) const
{
for (size_t i = 0; i != print_groups.size(); ++i)
{
const String& group_help_text = help_one_group(print_groups[i]);
if (empty(group_help_text))
{
continue;
}
result += group_help_text;
if (i < print_groups.size() - 1)
{
result += '\n';
}
}
}
inline
void
Options::generate_all_groups_help(String& result) const
{
std::vector all_groups;
all_groups.reserve(m_help.size());
for (const auto& group : m_help)
{
all_groups.push_back(group.first);
}
generate_group_help(result, all_groups);
}
inline
std::string
Options::help(const std::vector& help_groups) const
{
String result = m_help_string + "\nUsage:\n " +
toLocalString(m_program) + " " + toLocalString(m_custom_help);
if (!m_positional.empty() && !m_positional_help.empty()) {
result += " " + toLocalString(m_positional_help);
}
result += "\n\n";
if (help_groups.empty())
{
generate_all_groups_help(result);
}
else
{
generate_group_help(result, help_groups);
}
return toUTF8String(result);
}
inline
std::vector
Options::groups() const
{
std::vector g;
std::transform(
m_help.begin(),
m_help.end(),
std::back_inserter(g),
[] (const std::map::value_type& pair)
{
return pair.first;
}
);
return g;
}
inline
const HelpGroupDetails&
Options::group_help(const std::string& group) const
{
return m_help.at(group);
}
} // namespace cxxopts
#endif //CXXOPTS_HPP_INCLUDED
属性:
include:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include
D:\Software\?\cudaopencv\opencv4.5.0\build\install\include
C:\Program Files\PCL 1.10.0\3rdParty\Eigen\eigen3
D:\Software\?\cudaopencv\opencv4.5.0\build\install\include\opencv2
连接器-命令行
/INCLUDE:?warp_size@cuda@at@@YAHXZ
连接器-输入
asmjit.lib
torch_cuda_cpp.lib
c10.lib
c10_cuda.lib
caffe2_nvrtc.lib
clog.lib
cpuinfo.lib
dnnl.lib
kineto.lib
fbgemm.lib
libprotobuf.lib
libprotobuf-lite.lib
libprotoc.lib
pthreadpool.lib
torch.lib
torch_cpu.lib
torch_cuda.lib
torch_cuda_cu.lib
XNNPACK.lib
C/C++ 常规 附加包含目录:
D:\Software\vs2019+pcl+opencv\libtorch\include
D:\Software\vs2019+pcl+opencv\libtorch\include\torch\csrc\api\include
C/C++ 所有选项符合模式-是 (/permissive-)
不使用预编译头
库目录:D:\Software\vs2019+pcl+opencv\cudaopencv\opencv4.5.0\build\install\x64\vc16\lib
系统变量:
D:\Software\vs2019+pcl+opencv\libtorch\lib
D:\Software\vs2019+pcl+opencv\cudaopencv\opencv4.5.0\build\install\x64\vc16\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin
D:\Software\vs2019+pcl+opencv\libtorch\bin