目标检测和语义分割常用的数据增强(代码)

语义分割:

from PIL import Image, ImageFont, ImageDraw, ImageEnhance
import matplotlib.pyplot as plt
import numpy as np
import random
import  random
import os

def image_rotate(image,label):

    """
    对图像进行一定角度的旋转
    :param image_path:  图像路径
    :param save_path:   保存路径
    :param angle:       旋转角度
    :return:
    """
    image_rotated = image.transpose(Image.ROTATE_90).convert('RGB')
    label_rotated = label.transpose(Image.ROTATE_90)
    return image_rotated,label_rotated
def image_rotate1(image,label):

    """
    对图像进行一定角度的旋转
    :param image_path:  图像路径
    :param save_path:   保存路径
    :param angle:       旋转角度
    :return:
    """
    image_rotated = image.transpose(Image.ROTATE_270).convert('RGB')
    label_rotated = label.transpose(Image.ROTATE_270)
    return image_rotated,label_rotated
def bright(image):
    enh_bri = ImageEnhance.Brightness(image)
    brightness = 1.2
    image_brightened = enh_bri.enhance(brightness)

    return image_brightened.convert('RGB')
def ruidu(image):

    enh_sha = ImageEnhance.Sharpness(image)
    sharpness = 2.3
    image_sharped = enh_sha.enhance(sharpness)

    return image_sharped.convert('RGB')
def sedu(image):
    enh_col = ImageEnhance.Color(image)
    color = 1.2
    image_colored = enh_col.enhance(color)

    return image_colored.convert('RGB')
def duibidu(image):
    enh_con = ImageEnhance.Contrast(image)
    contrast = 1.3
    image_contrasted = enh_con.enhance(contrast)

    return image_contrasted.convert('RGB')
def image_flip(image,label):
    image_transpose = image.transpose(Image.FLIP_LEFT_RIGHT).convert('RGB')
    label_transpose = label.transpose(Image.FLIP_LEFT_RIGHT)
    return image_transpose,label_transpose
def image_color(image,label):
    image_transpose = image.transpose(Image.FLIP_TOP_BOTTOM).convert('RGB')
    label_transpose = label.transpose(Image.FLIP_TOP_BOTTOM)
    return image_transpose,label_transpose


path_img = r'E:\New_gj\dataset\T2\cut\images'
path_label = r'E:\New_gj\dataset\T2\cut\labels'
path_new_img = r'E:\New_gj\dataset\T2\after_enhance\images'
path_new_label = r'E:\New_gj\dataset\T2\after_enhance\labels'
img_list = os.listdir(path_img)
label_list = os.listdir(path_label)

k=0
for i in range(len(img_list)):
    img = Image.open(path_img + '/' + img_list[i])
    label =Image.open(path_label + '/' + img_list[i][0:-4] + '.png')
    #保存原图
    img.convert('RGB').save(path_new_img + '/' + str(("%05d" % (k))) + '.png')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k += 1
    #角度旋转第一次
    img1,mask = image_rotate(img,label)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.png')
    mask.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
    #角度旋转第二次
    img1,mask = image_rotate1(img,label)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.png')
    mask.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
    #调整亮度
    img1 = bright(img)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.png')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
    #调整对比度
    img1 = duibidu(img)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.png')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
    #调整锐度
    img1 = ruidu(img)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.png')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
    #调整色度
    img1 = sedu(img)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.png')
    label.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
    #左右翻转
    img1,mask = image_flip(img,label)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.png')
    mask.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k+=1
    #上下翻转
    img1,mask = image_color(img,label)
    img1.save(path_new_img + '/' + str(("%05d" % (k))) + '.png')
    mask.save(path_new_label + '/' + str(("%05d" % (k))) + '.png')
    k += 1



    print(img_list[i] + 'is finished')

目标检测:

import xml.etree.ElementTree as ET
import pickle
import os
from os import getcwd
import numpy as np
from PIL import Image
import shutil
import matplotlib.pyplot as plt

import imgaug as ia
from imgaug import augmenters as iaa


ia.seed(1)


def read_xml_annotation(root, image_id):
    in_file = open(os.path.join(root, image_id))
    tree = ET.parse(in_file)
    root = tree.getroot()
    bndboxlist = []

    for object in root.findall('object'):  # 找到root节点下的所有country节点
        bndbox = object.find('bndbox')  # 子节点下节点rank的值

        xmin = int(bndbox.find('xmin').text)
        xmax = int(bndbox.find('xmax').text)
        ymin = int(bndbox.find('ymin').text)
        ymax = int(bndbox.find('ymax').text)
        # print(xmin,ymin,xmax,ymax)
        bndboxlist.append([xmin, ymin, xmax, ymax])
        # print(bndboxlist)

    bndbox = root.find('object').find('bndbox')
    return bndboxlist


# (506.0000, 330.0000, 528.0000, 348.0000) -> (520.4747, 381.5080, 540.5596, 398.6603)
def change_xml_annotation(root, image_id, new_target):
    new_xmin = new_target[0]
    new_ymin = new_target[1]
    new_xmax = new_target[2]
    new_ymax = new_target[3]

    in_file = open(os.path.join(root, str(image_id) + '.xml'))  # 这里root分别由两个意思
    tree = ET.parse(in_file)
    xmlroot = tree.getroot()
    object = xmlroot.find('object')
    bndbox = object.find('bndbox')
    xmin = bndbox.find('xmin')
    xmin.text = str(new_xmin)
    ymin = bndbox.find('ymin')
    ymin.text = str(new_ymin)
    xmax = bndbox.find('xmax')
    xmax.text = str(new_xmax)
    ymax = bndbox.find('ymax')
    ymax.text = str(new_ymax)
    tree.write(os.path.join(root, str("%06d" % (str(id) + '.xml'))))


def change_xml_list_annotation(root, image_id, new_target, saveroot, id):
    in_file = open(os.path.join(root, str(image_id) + '.xml'))  # 这里root分别由两个意思
    tree = ET.parse(in_file)
    elem = tree.find('filename')
    elem.text = (id + '.jpg')
    xmlroot = tree.getroot()
    index = 0

    for object in xmlroot.findall('object'):  # 找到root节点下的所有country节点
        bndbox = object.find('bndbox')  # 子节点下节点rank的值

        # xmin = int(bndbox.find('xmin').text)
        # xmax = int(bndbox.find('xmax').text)
        # ymin = int(bndbox.find('ymin').text)
        # ymax = int(bndbox.find('ymax').text)

        new_xmin = new_target[index][0]
        new_ymin = new_target[index][1]
        new_xmax = new_target[index][2]
        new_ymax = new_target[index][3]

        xmin = bndbox.find('xmin')
        xmin.text = str(new_xmin)
        ymin = bndbox.find('ymin')
        ymin.text = str(new_ymin)
        xmax = bndbox.find('xmax')
        xmax.text = str(new_xmax)
        ymax = bndbox.find('ymax')
        ymax.text = str(new_ymax)

        index = index + 1

    tree.write(os.path.join(saveroot, id + '.xml'))


def mkdir(path):
    # 去除首位空格
    path = path.strip()
    # 去除尾部 \ 符号
    path = path.rstrip("\\")
    # 判断路径是否存在
    # 存在     True
    # 不存在   False
    isExists = os.path.exists(path)
    # 判断结果
    if not isExists:
        # 如果不存在则创建目录
        # 创建目录操作函数
        os.makedirs(path)
        print(path + ' 创建成功')
        return True
    else:
        # 如果目录存在则不创建,并提示目录已存在
        print(path + ' 目录已存在')
        return False


if __name__ == "__main__":

    IMG_DIR = "E:/New_gj/dataset/cml/JPEGImages"
    XML_DIR = "E:/New_gj/dataset/cml/Annotations"

    AUG_XML_DIR = "E:/New_gj/dataset/cml/xml_aug"  # 存储增强后的XML文件夹路径
    try:
        shutil.rmtree(AUG_XML_DIR)
    except FileNotFoundError as e:
        a = 1
    mkdir(AUG_XML_DIR)

    AUG_IMG_DIR = "E:/New_gj/dataset/cml/img_aug"  # 存储增强后的影像文件夹路径
    try:
        shutil.rmtree(AUG_IMG_DIR)
    except FileNotFoundError as e:
        a = 1
    mkdir(AUG_IMG_DIR)

    AUGLOOP = 5  # 每张影像增强的数量

    boxes_img_aug_list = []
    new_bndbox = []
    new_bndbox_list = []

    # 影像增强
    seq = iaa.Sequential([
        iaa.Flipud(0.5),  # vertically flip 20% of all images
        iaa.Fliplr(0.5),  # 镜像
        iaa.Multiply((1.2, 1.5)),  # change brightness, doesn't affect BBs
        iaa.GaussianBlur(sigma=(0, 3.0)),  # iaa.GaussianBlur(0.5),
        iaa.Affine(
            translate_px={"x": 15, "y": 15},
            scale=(0.8, 0.95),
            rotate=(-30, 30)
        )  # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs
    ])

    for root, sub_folders, files in os.walk(XML_DIR):

        for name in files:

            bndbox = read_xml_annotation(XML_DIR, name)
            shutil.copy(os.path.join(XML_DIR, name), AUG_XML_DIR)
            shutil.copy(os.path.join(IMG_DIR, name[:-4] + '.jpg'), AUG_IMG_DIR)

            for epoch in range(AUGLOOP):
                seq_det = seq.to_deterministic()  # 保持坐标和图像同步改变,而不是随机
                # 读取图片
                img = Image.open(os.path.join(IMG_DIR, name[:-4] + '.jpg'))
                # sp = img.size
                img = np.asarray(img)
                # bndbox 坐标增强
                for i in range(len(bndbox)):
                    bbs = ia.BoundingBoxesOnImage([
                        ia.BoundingBox(x1=bndbox[i][0], y1=bndbox[i][1], x2=bndbox[i][2], y2=bndbox[i][3]),
                    ], shape=img.shape)

                    bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]
                    boxes_img_aug_list.append(bbs_aug)

                    # new_bndbox_list:[[x1,y1,x2,y2],...[],[]]
                    n_x1 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x1)))
                    n_y1 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y1)))
                    n_x2 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x2)))
                    n_y2 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y2)))
                    if n_x1 == 1 and n_x1 == n_x2:
                        n_x2 += 1
                    if n_y1 == 1 and n_y2 == n_y1:
                        n_y2 += 1
                    if n_x1 >= n_x2 or n_y1 >= n_y2:
                        print('error', name)
                    new_bndbox_list.append([n_x1, n_y1, n_x2, n_y2])
                # 存储变化后的图片
                image_aug = seq_det.augment_images([img])[0]
                path = os.path.join(AUG_IMG_DIR, name[:-4] + '_' + str(epoch+1) + '.jpg')
                #path = os.path.join(AUG_IMG_DIR, str("%06d" % (len(files) + int(name[:-4]) + epoch * 250)) + '.jpg')
                image_auged = bbs.draw_on_image(image_aug, thickness=0)
                Image.fromarray(image_auged).save(path)

                # 存储变化后的XML
                change_xml_list_annotation(XML_DIR, name[:-4], new_bndbox_list, AUG_XML_DIR, name[:-4] + '_' + str(epoch+1))
                print(name[:-4] + '_' + str(epoch+1) + '.jpg')
                new_bndbox_list = []

你可能感兴趣的:(数据集,目标检测,计算机视觉,深度学习)