NNDL 作业8:RNN - 简单循环网络

简单循环网络( Simple Recurrent Network , SRN)只有一个隐藏层的神经网络 .

目录

    • 1. 使用Numpy实现SRN
    • 2. 在1的基础上,增加激活函数tanh
    • 3. 分别使用nn.RNNCell、nn.RNN实现SRN
    • 4. 分析“二进制加法” 源代码(选做)
    • 5. 实现“Character-Level Language Models”源代码(必做)
    • 6. 分析“序列到序列”源代码(选做)
    • 7. “编码器-解码器”的简单实现(必做)
    • 总结
    • 参考

1. 使用Numpy实现SRN

NNDL 作业8:RNN - 简单循环网络_第1张图片

# coding=gbk
 
import numpy as np
 
inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)
 
state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)
 
w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t)
    in_h2 = np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t)
    state_t = in_h1, in_h2
    print('a',state_t,in_h1,in_h2)
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

运行结果:

inputs is  [[1. 1.]
 [1. 1.]
 [2. 2.]]
state_t is  [0. 0.]
--------------------------------------
inputs is  [1. 1.]
state_t is  [0. 0.]
a (2.0, 2.0) 2.0 2.0
output_y is  4.0 4.0
---------------
inputs is  [1. 1.]
state_t is  (2.0, 2.0)
a (6.0, 6.0) 6.0 6.0
output_y is  12.0 12.0
---------------
inputs is  [2. 2.]
state_t is  (6.0, 6.0)
a (16.0, 16.0) 16.0 16.0
output_y is  32.0 32.0
---------------

2. 在1的基础上,增加激活函数tanh

NNDL 作业8:RNN - 简单循环网络_第2张图片

import numpy as np
 
inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)
 
state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)
 
w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.tanh(np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t))
    in_h2 = np.tanh(np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t))
    state_t = in_h1, in_h2
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

运行结果:

inputs is  [[1. 1.]
 [1. 1.]
 [2. 2.]]
state_t is  [0. 0.]
--------------------------------------
inputs is  [1. 1.]
state_t is  [0. 0.]
output_y is  1.9280551601516338 1.9280551601516338
---------------
inputs is  [1. 1.]
state_t is  (0.9640275800758169, 0.9640275800758169)
output_y is  1.9984510891336251 1.9984510891336251
---------------
inputs is  [2. 2.]
state_t is  (0.9992255445668126, 0.9992255445668126)
output_y is  1.9999753470497836 1.9999753470497836
---------------

3. 分别使用nn.RNNCell、nn.RNN实现SRN

NNDL 作业8:RNN - 简单循环网络_第3张图片
nn.RNN
使用nn.RNN方法有三个参数(input_size,hidden_size,num_layers)
input_size是word_embedding的维度,比如用100维的向量来表示一个单词,那么input_size就是100;如果预测的是房价,房价就一个数字,那么input_size就是1
hidden_size是指memory size,我们用一个多长的向量来表达
h是最后一个时间戳上面的所有memory的状态
out是所有时间戳上面最后一个memory的状态
NNDL 作业8:RNN - 简单循环网络_第4张图片
nn.RNNCell
相比一步到位的nn.RNN,也可以使用nn.RNNCell,它将序列上的每个时刻分开来处理。
也就是说,如果要处理的是3个句子,每个句子10个单词,每个单词用长100的向量,那么送入nn.RNN的Tensor的shape就是[10,3,100]。
但如果使用nn.RNNCell,则将每个时刻分开处理,送入的Tensor的shape是[3,100],但要将此计算单元运行10次。显然这种方式比较麻烦,但使用起来也更灵活。
NNDL 作业8:RNN - 简单循环网络_第5张图片

1、用torch.nn.RNNCell()

import numpy as np
 
inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)
 
state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)
 
w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.tanh(np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t))
    in_h2 = np.tanh(np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t))
    state_t = in_h1, in_h2
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

运行结果:

inputs is  [[1. 1.]
 [1. 1.]
 [2. 2.]]
state_t is  [0. 0.]
--------------------------------------
inputs is  [1. 1.]
state_t is  [0. 0.]
output_y is  1.9280551601516338 1.9280551601516338
---------------
inputs is  [1. 1.]
state_t is  (0.9640275800758169, 0.9640275800758169)
output_y is  1.9984510891336251 1.9984510891336251
---------------
inputs is  [2. 2.]
state_t is  (0.9992255445668126, 0.9992255445668126)
output_y is  1.9999753470497836 1.9999753470497836
---------------

2、torch.nn.RNN

import torch
 
batch_size = 1
seq_len = 3
input_size = 2
hidden_size = 2
num_layers = 1
output_size = 2
 
cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers,nonlinearity='relu')
for name, param in cell.named_parameters():  # 初始化参数
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)
 
# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])
 
inputs = torch.Tensor([[[1, 1]],
                       [[1, 1]],
                       [[2, 2]]])
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)
print('out',out,hidden)
 
 
 
print('Input :', inputs[0])
print('hidden:', 0, 0)
print('Output:', liner(out[0]))
print('--------------------------------------')
print('Input :', inputs[1])
print('hidden:', out[0])
print('Output:', liner(out[1]))
print('--------------------------------------')
print('Input :', inputs[2])
print('hidden:', out[1])
print('Output:', liner(out[2]))

运行结果:

out tensor([[[ 2.,  2.]],

        [[ 6.,  6.]],

        [[16., 16.]]], grad_fn=<StackBackward0>) tensor([[[16., 16.]]], grad_fn=<StackBackward0>)
Input : tensor([[1., 1.]])
hidden: 0 0
Output: tensor([[4., 4.]], grad_fn=<AddmmBackward0>)
--------------------------------------
Input : tensor([[1., 1.]])
hidden: tensor([[2., 2.]], grad_fn=<SelectBackward0>)
Output: tensor([[12., 12.]], grad_fn=<AddmmBackward0>)
--------------------------------------
Input : tensor([[2., 2.]])
hidden: tensor([[6., 6.]], grad_fn=<SelectBackward0>)
Output: tensor([[32., 32.]], grad_fn=<AddmmBackward0>)

4. 分析“二进制加法” 源代码(选做)

NNDL 作业8:RNN - 简单循环网络_第6张图片
就是逢二进一

import copy, numpy as np
 
np.random.seed(0)
 
 
# compute sigmoid nonlinearity
def sigmoid(x):
    output = 1 / (1 + np.exp(-x))
    return output
 
 
# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
    return output * (1 - output)
 
 
# training dataset generation
int2binary = {}
binary_dim = 8
 
largest_number = pow(2, binary_dim)
binary = np.unpackbits(
    np.array([range(largest_number)], dtype=np.uint8).T, axis=1)
for i in range(largest_number):
    int2binary[i] = binary[i]
 
# input variables
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1
 
# initialize neural network weights
synapse_0 = 2 * np.random.random((input_dim, hidden_dim)) - 1
synapse_1 = 2 * np.random.random((hidden_dim, output_dim)) - 1
synapse_h = 2 * np.random.random((hidden_dim, hidden_dim)) - 1
 
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
 
# training logic
for j in range(10000):
 
    # generate a simple addition problem (a + b = c)
    a_int = np.random.randint(largest_number / 2)  # int version
    a = int2binary[a_int]  # binary encoding
 
    b_int = np.random.randint(largest_number / 2)  # int version
    b = int2binary[b_int]  # binary encoding
 
    # true answer
    c_int = a_int + b_int
    c = int2binary[c_int]
 
    # where we'll store our best guess (binary encoded)
    d = np.zeros_like(c)
 
    overallError = 0
 
    layer_2_deltas = list()
    layer_1_values = list()
    layer_1_values.append(np.zeros(hidden_dim))
 
    # moving along the positions in the binary encoding
    for position in range(binary_dim):
        # generate input and output
        X = np.array([[a[binary_dim - position - 1], b[binary_dim - position - 1]]])
        y = np.array([[c[binary_dim - position - 1]]]).T
 
        # hidden layer (input ~+ prev_hidden)
        layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))
 
        # output layer (new binary representation)
        layer_2 = sigmoid(np.dot(layer_1, synapse_1))
 
        # did we miss?... if so, by how much?
        layer_2_error = y - layer_2
        layer_2_deltas.append((layer_2_error) * sigmoid_output_to_derivative(layer_2))
        overallError += np.abs(layer_2_error)
 
        # decode estimate so we can print it out
        d[binary_dim - position - 1] = np.round(layer_2[0][0])
 
        # store hidden layer so we can use it in the next timestep
        layer_1_values.append(copy.deepcopy(layer_1))
 
    future_layer_1_delta = np.zeros(hidden_dim)
 
    for position in range(binary_dim):
        X = np.array([[a[position], b[position]]])
        layer_1 = layer_1_values[-position - 1]
        prev_layer_1 = layer_1_values[-position - 2]
 
        # error at output layer
        layer_2_delta = layer_2_deltas[-position - 1]
        # error at hidden layer
        layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(
            synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
 
        # let's update all our weights so we can try again
        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
        synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
        synapse_0_update += X.T.dot(layer_1_delta)
 
        future_layer_1_delta = layer_1_delta
 
    synapse_0 += synapse_0_update * alpha
    synapse_1 += synapse_1_update * alpha
    synapse_h += synapse_h_update * alpha
 
    synapse_0_update *= 0
    synapse_1_update *= 0
    synapse_h_update *= 0
 
    # print out progress
    if (j % 1000 == 0):
        print("Error:" + str(overallError))
        print("Pred:" + str(d))
        print("True:" + str(c))
        out = 0
        for index, x in enumerate(reversed(d)):
            out += x * pow(2, index)
        print(str(a_int) + " + " + str(b_int) + " = " + str(out))
        print("------------")

运行结果:

Error:[[3.45638663]]
Pred:[0 0 0 0 0 0 0 1]
True:[0 1 0 0 0 1 0 1]
9 + 60 = 1
------------
Error:[[3.63389116]]
Pred:[1 1 1 1 1 1 1 1]
True:[0 0 1 1 1 1 1 1]
28 + 35 = 255
------------
Error:[[3.91366595]]
Pred:[0 1 0 0 1 0 0 0]
True:[1 0 1 0 0 0 0 0]
116 + 44 = 72
------------
Error:[[3.72191702]]
Pred:[1 1 0 1 1 1 1 1]
True:[0 1 0 0 1 1 0 1]
4 + 73 = 223
------------
Error:[[3.5852713]]
Pred:[0 0 0 0 1 0 0 0]
True:[0 1 0 1 0 0 1 0]
71 + 11 = 8
------------
Error:[[2.53352328]]
Pred:[1 0 1 0 0 0 1 0]
True:[1 1 0 0 0 0 1 0]
81 + 113 = 162
------------
Error:[[0.57691441]]
Pred:[0 1 0 1 0 0 0 1]
True:[0 1 0 1 0 0 0 1]
81 + 0 = 81
------------
Error:[[1.42589952]]
Pred:[1 0 0 0 0 0 0 1]
True:[1 0 0 0 0 0 0 1]
4 + 125 = 129
------------
Error:[[0.47477457]]
Pred:[0 0 1 1 1 0 0 0]
True:[0 0 1 1 1 0 0 0]
39 + 17 = 56
------------
Error:[[0.21595037]]
Pred:[0 0 0 0 1 1 1 0]
True:[0 0 0 0 1 1 1 0]
11 + 3 = 14
------------

RNN主要学两件事,一个是前一位的进位,一个是当前位的加法操作。只告诉当前阶段和前一阶段的计算结果,让网络自己学习加法和进位操作。

Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - i am trask

5. 实现“Character-Level Language Models”源代码(必做)

NNDL 作业8:RNN - 简单循环网络_第7张图片
翻译Character-Level Language Models 相关内容
The Unreasonable Effectiveness of Recurrent Neural Networks

  • 假设我们只有四个可能字母“helo”的词汇表,并且想要在训练序列“hello”上训练一个RNN。这个训练序列实际上是4个独立训练示例的来源:1.给定“h”的上下文,“e”的概率应该是可能的,2。“l”在“he”的上下文中应该是可能的,3。“l”也应该有可能给定“hel”的上下文,最后是4。“o”应该可能是给定“地狱”的上下文。具体地说,我们将使用1/k编码将每个字符编码成一个向量(即,除了词汇表中字符索引处的单个字符外,所有字符都为零),并使用step函数一次一个地将它们输入RNN。然后,我们将观察一个四维输出向量序列(每个字符一维),我们将其解释为RNN当前分配给序列中下一个字符的置信度。
  • 没有序列的顺序处理。您可能会认为将序列作为输入或输出可能相对较少,但需要认识的重要一点是,即使您的输入/输出是固定向量,仍然可以使用这种强大的形式主义以顺序方式处理它们。

编码实现该模型

# coding=gbk
import torch

# 使用RNN 有嵌入层和线性层
num_class = 4  # 4个类别
input_size = 4  # 输入维度是4
hidden_size = 8  # 隐层是8个维度
embedding_size = 10  # 嵌入到10维空间
batch_size = 1
num_layers = 2  # 两层的RNN
seq_len = 5  # 序列长度是5

# 准备数据
idx2char = ['e', 'h', 'l', 'o']  # 字典
x_data = [[1, 0, 2, 2, 3]]  # hello  维度(batch,seqlen)
y_data = [3, 1, 2, 3, 2]  # ohlol    维度 (batch*seqlen)

inputs = torch.LongTensor(x_data)
labels = torch.LongTensor(y_data)


# 构造模型
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.emb = torch.nn.Embedding(input_size, embedding_size)
        self.rnn = torch.nn.RNN(input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers,
                                batch_first=True)
        self.fc = torch.nn.Linear(hidden_size, num_class)

    def forward(self, x):
        hidden = torch.zeros(num_layers, x.size(0), hidden_size)
        x = self.emb(x)  # (batch,seqlen,embeddingsize)
        x, _ = self.rnn(x, hidden)
        x = self.fc(x)
        return x.view(-1, num_class)  # 转变维2维矩阵,seq*batchsize*numclass -》((seq*batchsize),numclass)


model = Model()

# 损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.05)  # lr = 0.01学习的太慢

# 训练
for epoch in range(15):
    optimizer.zero_grad()
    outputs = model(inputs)  # inputs是(seq,Batchsize,Inputsize) outputs是(seq,Batchsize,Hiddensize)
    loss = criterion(outputs, labels)  # labels是(seq,batchsize,1)
    loss.backward()
    optimizer.step()

    _, idx = outputs.max(dim=1)
    idx = idx.data.numpy()
    print("Predicted:", ''.join([idx2char[x] for x in idx]), end='')
    print(",Epoch {}/15 loss={:.3f}".format(epoch + 1, loss.item()))

运行结果:

Predicted: leeel,Epoch 1/15 loss=1.494
Predicted: lllll,Epoch 2/15 loss=1.202
Predicted: lllll,Epoch 3/15 loss=1.040
Predicted: ollol,Epoch 4/15 loss=0.872
Predicted: ohlol,Epoch 5/15 loss=0.634
Predicted: ohlol,Epoch 6/15 loss=0.433
Predicted: ohlol,Epoch 7/15 loss=0.297
Predicted: ohlol,Epoch 8/15 loss=0.202
Predicted: ohlol,Epoch 9/15 loss=0.138
Predicted: ohlol,Epoch 10/15 loss=0.096
Predicted: ohlol,Epoch 11/15 loss=0.068
Predicted: ohlol,Epoch 12/15 loss=0.049
Predicted: ohlol,Epoch 13/15 loss=0.036
Predicted: ohlol,Epoch 14/15 loss=0.027
Predicted: ohlol,Epoch 15/15 loss=0.021

6. 分析“序列到序列”源代码(选做)

NNDL 作业8:RNN - 简单循环网络_第8张图片
h0相当于初始隐状态输入,h是正常的输入,1、2、3、4分别是不同的隐状态进入到下一个RNN Cell中去,由上一个的隐状态向量和当前输入确定当前输出和隐状态向量输出,从而将“hello”翻译成了"ohlol".
NNDL 作业8:RNN - 简单循环网络_第9张图片

# Model
class Seq2Seq(nn.Module):
    def __init__(self):
        super(Seq2Seq, self).__init__()
        self.encoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5) # encoder
        self.decoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5) # decoder
        self.fc = nn.Linear(n_hidden, n_class)
 
    def forward(self, enc_input, enc_hidden, dec_input):
        # enc_input(=input_batch): [batch_size, n_step+1, n_class]
        # dec_inpu(=output_batch): [batch_size, n_step+1, n_class]
        enc_input = enc_input.transpose(0, 1) # enc_input: [n_step+1, batch_size, n_class]
        dec_input = dec_input.transpose(0, 1) # dec_input: [n_step+1, batch_size, n_class]
 
        # h_t : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        _, h_t = self.encoder(enc_input, enc_hidden)
        # outputs : [n_step+1, batch_size, num_directions(=1) * n_hidden(=128)]
        outputs, _ = self.decoder(dec_input, h_t)
 
        model = self.fc(outputs) # model : [n_step+1, batch_size, n_class]
        return model
 
model = Seq2Seq().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
#下面是训练,由于输出的 pred 是个三维的数据,所以计算 loss 需要每个样本单独计算,因此就有了下面 for 循环的代码
 
for epoch in range(5000):
  for enc_input_batch, dec_input_batch, dec_output_batch in loader:
      # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
      h_0 = torch.zeros(1, batch_size, n_hidden).to(device)
 
      (enc_input_batch, dec_intput_batch, dec_output_batch) = (enc_input_batch.to(device), dec_input_batch.to(device), dec_output_batch.to(device))
      # enc_input_batch : [batch_size, n_step+1, n_class]
      # dec_intput_batch : [batch_size, n_step+1, n_class]
      # dec_output_batch : [batch_size, n_step+1], not one-hot
      pred = model(enc_input_batch, h_0, dec_intput_batch)
      # pred : [n_step+1, batch_size, n_class]
      pred = pred.transpose(0, 1) # [batch_size, n_step+1(=6), n_class]
      loss = 0
      for i in range(len(dec_output_batch)):
          # pred[i] : [n_step+1, n_class]
          # dec_output_batch[i] : [n_step+1]
          loss += criterion(pred[i], dec_output_batch[i])
      if (epoch + 1) % 1000 == 0:
          print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
          
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()

seq2seq(sequence to sequence)模型是NLP中的一个经典模型,基于RNN网络模型构建,用途非常广泛:语言翻译,人机对话,问答系统等。
Seq2Seq,就如字面意思,输入一个序列,输出另一个序列,比如在机器翻译中,输入英文,输出中文。这种结构最重要的地方在于输入序列和输出序列的长度是可变的。而Seq2Seq模型也经常在输出的长度不确定时采用。

7. “编码器-解码器”的简单实现(必做)

NNDL 作业8:RNN - 简单循环网络_第10张图片
NNDL 作业8:RNN - 简单循环网络_第11张图片
首先,从上面的图可以很明显的看出,Seq2Seq 需要对三个变量进行操作,这和之前我接触到的所有网络结构都不一样。我们把 Encoder 的输入称为 enc_input,Decoder 的输入称为 dec_input, Decoder 的输出称为 dec_output。下面以一个具体的例子来说明整个 Seq2Seq 的工作流程。

# coding=gbk
# code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data as Data

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# ?: Symbol that will fill in blank sequence if current batch data size is short than n_step

letter = [c for c in 'SE?abcdefghijklmnopqrstuvwxyz']
letter2idx = {n: i for i, n in enumerate(letter)}

seq_data = [['man', 'women'], ['black', 'white'], ['king', 'queen'], ['girl', 'boy'], ['up', 'down'], ['high', 'low']]

# Seq2Seq Parameter
n_step = max([max(len(i), len(j)) for i, j in seq_data])  # max_len(=5)
n_hidden = 128
n_class = len(letter2idx)  # classfication problem
batch_size = 3


def make_data(seq_data):
    enc_input_all, dec_input_all, dec_output_all = [], [], []

    for seq in seq_data:
        for i in range(2):
            seq[i] = seq[i] + '?' * (n_step - len(seq[i]))  # 'man??', 'women'

        enc_input = [letter2idx[n] for n in (seq[0] + 'E')]  # ['m', 'a', 'n', '?', '?', 'E']
        dec_input = [letter2idx[n] for n in ('S' + seq[1])]  # ['S', 'w', 'o', 'm', 'e', 'n']
        dec_output = [letter2idx[n] for n in (seq[1] + 'E')]  # ['w', 'o', 'm', 'e', 'n', 'E']

        enc_input_all.append(np.eye(n_class)[enc_input])
        dec_input_all.append(np.eye(n_class)[dec_input])
        dec_output_all.append(dec_output)  # not one-hot

    # make tensor
    return torch.Tensor(enc_input_all), torch.Tensor(dec_input_all), torch.LongTensor(dec_output_all)


'''
enc_input_all: [6, n_step+1 (because of 'E'), n_class]
dec_input_all: [6, n_step+1 (because of 'S'), n_class]
dec_output_all: [6, n_step+1 (because of 'E')]
'''
enc_input_all, dec_input_all, dec_output_all = make_data(seq_data)


class TranslateDataSet(Data.Dataset):
    def __init__(self, enc_input_all, dec_input_all, dec_output_all):
        self.enc_input_all = enc_input_all
        self.dec_input_all = dec_input_all
        self.dec_output_all = dec_output_all

    def __len__(self):  # return dataset size
        return len(self.enc_input_all)

    def __getitem__(self, idx):
        return self.enc_input_all[idx], self.dec_input_all[idx], self.dec_output_all[idx]


loader = Data.DataLoader(TranslateDataSet(enc_input_all, dec_input_all, dec_output_all), batch_size, True)


# Model
class Seq2Seq(nn.Module):
    def __init__(self):
        super(Seq2Seq, self).__init__()
        self.encoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # encoder
        self.decoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # decoder
        self.fc = nn.Linear(n_hidden, n_class)

    def forward(self, enc_input, enc_hidden, dec_input):
        # enc_input(=input_batch): [batch_size, n_step+1, n_class]
        # dec_inpu(=output_batch): [batch_size, n_step+1, n_class]
        enc_input = enc_input.transpose(0, 1)  # enc_input: [n_step+1, batch_size, n_class]
        dec_input = dec_input.transpose(0, 1)  # dec_input: [n_step+1, batch_size, n_class]

        # h_t : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        _, h_t = self.encoder(enc_input, enc_hidden)
        # outputs : [n_step+1, batch_size, num_directions(=1) * n_hidden(=128)]
        outputs, _ = self.decoder(dec_input, h_t)

        model = self.fc(outputs)  # model : [n_step+1, batch_size, n_class]
        return model


model = Seq2Seq().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for epoch in range(5000):
    for enc_input_batch, dec_input_batch, dec_output_batch in loader:
        # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
        h_0 = torch.zeros(1, batch_size, n_hidden).to(device)

        (enc_input_batch, dec_intput_batch, dec_output_batch) = (
        enc_input_batch.to(device), dec_input_batch.to(device), dec_output_batch.to(device))
        # enc_input_batch : [batch_size, n_step+1, n_class]
        # dec_intput_batch : [batch_size, n_step+1, n_class]
        # dec_output_batch : [batch_size, n_step+1], not one-hot
        pred = model(enc_input_batch, h_0, dec_intput_batch)
        # pred : [n_step+1, batch_size, n_class]
        pred = pred.transpose(0, 1)  # [batch_size, n_step+1(=6), n_class]
        loss = 0
        for i in range(len(dec_output_batch)):
            # pred[i] : [n_step+1, n_class]
            # dec_output_batch[i] : [n_step+1]
            loss += criterion(pred[i], dec_output_batch[i])
        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


# Test
def translate(word):
    enc_input, dec_input, _ = make_data([[word, '?' * n_step]])
    enc_input, dec_input = enc_input.to(device), dec_input.to(device)
    # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
    hidden = torch.zeros(1, 1, n_hidden).to(device)
    output = model(enc_input, hidden, dec_input)
    # output : [n_step+1, batch_size, n_class]

    predict = output.data.max(2, keepdim=True)[1]  # select n_class dimension
    decoded = [letter[i] for i in predict]
    translated = ''.join(decoded[:decoded.index('E')])

    return translated.replace('?', '')


print('test')
print('man ->', translate('man'))
print('mans ->', translate('mans'))
print('king ->', translate('king'))
print('black ->', translate('black'))
print('up ->', translate('up'))

运行结果:

Epoch: 1000 cost = 0.002338
Epoch: 1000 cost = 0.002321
Epoch: 2000 cost = 0.000495
Epoch: 2000 cost = 0.000492
Epoch: 3000 cost = 0.000147
Epoch: 3000 cost = 0.000157
Epoch: 4000 cost = 0.000053
Epoch: 4000 cost = 0.000051
Epoch: 5000 cost = 0.000018
Epoch: 5000 cost = 0.000019
test
man -> women
mans -> women
king -> queen
black -> white
up -> down

总结

这次作业我们使用numpy实现了一个SRN,已有的SRN基础上加入了激活函数,分别使用nn.RNNCell、nn.RNN实现SRN,分析“二进制加法” 源代码,实现“Character-Level Language Models”源代码,分析“序列到序列”源代码,简单实现编码器-解码器,明白了RNN和RNNCell的区别与联系以及他们的含义,收获了很多。

参考

Seq2Seq 的 PyTorch 实现
完全图解RNN、RNN变体、Seq2Seq、Attention机制

你可能感兴趣的:(rnn,python,深度学习)