神经网络与上一章的感知机有很多共同点,主要以两者差异为中心,介绍神经网络的结构
左边一列为输入层,最右边一列称为输出层,中间的一列称为中间层(隐藏层)
改写之前的感知数学式
引入新函数h(x)
输入信号的总和会被h(x)转换,转换后的值就是输出y
上面的h(x)函数就是激活函数(activation function)
信号的加权总和为节点a,然后节点a被激活函数h()转换成节点y。
神经元和节点两个术语含义相同
上面的激活函数以阈值为界,输入一超过阈值,就切换输出,这样的函数称为“阶跃函数”,神经网络用的是其他的激活函数
经常使用的就是这一个sigmoid函数
更常见的是这个写法
e是纳皮尔常数2.718281828459045…
def step_func(x):
if x > 0:
return 1
else:
return 0
实现简单,但参数x只接受实数,将其修改为支持numpy数组的实现
import numpy as np
def step_func(x):
y = x > 0
return y.astype(np.int)
import numpy as np
import matplotlib.pyplot as plt
def step_func(x):
return np.array(x>0,dtype=np.int)
x = np.arange(-5.0,5.0,0.1)
y = step_func(x)
plt.plot(x,y)
plt.ylim(-0.1,1.1)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.exp(-x))
x = np.arange(-5.0,5.0,0.1)
y = sigmoid(x)
plt.plot(x,y)
plt.ylim(-0.1,1.1)
plt.show()
sigmoid是一条平滑的曲线,输出随着输入发生连续性的变化。而阶跃函数以0为界,输出发生急剧性的变化。sigmoid函数的平滑性对神经网络的学习具有重要意义。
sigmoid函数与阶跃函数还有个共同点,就是两者均为非线性函数。神经网络的激活函数必须使用非线性函数,因为线性函数进行神经网络的叠层没有意义。
最近的激活函数有ReLU(Rectified Linear Unit)函数
也是一个非常简单的函数
import numpy as np
import matplotlib.pyplot as plt
def relu(x):
return np.maximum(0,x)
x = np.arange(-5.0,5.0,0.1)
y = relu(x)
plt.plot(x,y)
plt.ylim(-0.1,6)
plt.show()
这里使用了numpy的maximum函数。maximum函数会从输入的数值中选择较大的那个值进行输出
掌握numpy多维数组的运算,就能高效的实现神经网络
多维数组就是数字的集合,例如下面的一维数组
import numpy as np
A = np.array([1,2,3,4])
print(np.ndim(A))
print(A.shape)
print(A.shape[0])
数组的维数可以通过np.ndim()函数获得,数组的形状通过实例变量shape获得
B = np.array([[1,2],[3,4],[5,6]])
print(np.ndim(B))
print(B.shape)
print(B.shape[0])
3×2的数组B表示第一个维度有3个元素,第二个维度有2个元素。二维数组也被称为矩阵,数组的横向排列称为行(row),纵向排列称为列(column)
线性代数的知识
import numpy as np
A = np.array([[1,2,3],[4,5,6]])
B = np.array([[1,2],[3,4],[5,6]])
print(np.dot(A,B))
从输入层到第一层的第一个神经元的信号传递过程
a 1 1 a_1^1 a11通过加权信号和偏置的和按如下方式进行计算:
使用矩阵的乘法运算,可以将第一层的加权和表示成以下的式子:
用numpy多维数组来实现式
import numpy as np
X = np.array([1.0,0.5])
W1 = np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]])
B1 = np.array([0.1,0.2,0.3])
print(W1.shape)
print(X.shape)
print(B1.shape)
A1 = np.dot(X,W1)+B1
print(A1)
import numpy as np
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def identity_function(x):
return x
def init_network():
network = {}
network['W1'] = np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]])
network['b1'] = np.array([0.1,0.2,0.3])
network['W2'] = np.array([[0.1,0.4],[0.2,0.5],[0.3,0.6]])
network['b2'] = np.array([0.1,0.2])
network['W3'] = np.array([[0.1,0.3],[0.2,0.4]])
network['b3'] = np.array([0.1,0.2])
return network
def forword(network,x):
W1,W2,W3 = network['W1'],network['W2'],network['W3']
b1,b2,b3 = network['b1'],network['b2'],network['b3']
a1 = np.dot(x,W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1,W2) + b2
z2 = sigmoid(a2)
a3 = np.dot(z2,W3) + b3
y = identity_function(a3)
return y
network = init_network()
x = np.array([1.0,0.5])
y = forword(network,x)
print(y)
init_network()函数会进行权重和偏置的初始化,并将其保存在字典变量network中,字典变量network中保存了每一层所需的参数(权重和偏置)。forward()函数中封装了将输入信号转换为输出信号的处理过程。
神经网络可以用在分类问题和回归问题上,需要根据情况改输出层的激活函数。
一般来说,回归问题用恒等函数,分类问题用softmax函数。
恒等函数对于输入的信息,会不加以任何改动地直接输出
分类问题中使用的softmax函数可以用以下式表示
分子是输入信号 a k a_k ak的指数函数,分母是所有输入信号的指数函数的和
import numpy as np
a = np.array([0.3,2.9,4.0])
exp_a = np.exp(a)
print(exp_a)
sum_exp_a = np.sum(exp_a)
print(sum_exp_a)
y = exp_a / sum_exp_a
print(y)
def softmax(a):
exp_a = np.exp(a)
sum_exp_a = np.sum(exp_a)
y = exp_a / sum_exp_a
return y
softmax函数在计算机运行上会出现溢出的缺陷,指数运算的值会变得很大,可以进行以下的修改:
def softmax(a):
c = np.max(a)
exp_a = np.exp(a-c) # 溢出对策
sum_exp_a = np.sum(exp_a)
y = exp_a / sum_exp_a
return y
a = np.array([0.3,2.9,4.0])
y = softmax(a)
print(y)
print(np.sum(y))
softmax函数的输出是0.0到1.0之间的实数,并且softmax函数的输出值的总和为1,这也是该函数的一个重要性质,才可以把函数的输出解释为概率
根据待解决的问题来决定。对于分类问题,输出层的神经元数量一般设定为类别的数量。例如预测手写数字就是将输出层的神经元设定为10个。
介绍完结构,来解决实际问题。进行手写数字图像的分类,先进行神经网络的推理处理,这个推理处理也称为神经网络的前向传播(forward propagation)
MNIST数据集是由0到9的数字图像构成,训练图像有6万张,测试图像有1万张,这些图像可以用于学习和推理。一般是先用训练图像进行学习,再用学习到的模型度量能在多大程度上对测试图像进行正确的分类。
# coding: utf-8
try:
import urllib.request
except ImportError:
raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np
url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
'train_img':'train-images-idx3-ubyte.gz',
'train_label':'train-labels-idx1-ubyte.gz',
'test_img':'t10k-images-idx3-ubyte.gz',
'test_label':'t10k-labels-idx1-ubyte.gz'
}
dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"
train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784
def _download(file_name):
file_path = dataset_dir + "/" + file_name
if os.path.exists(file_path):
return
print("Downloading " + file_name + " ... ")
urllib.request.urlretrieve(url_base + file_name, file_path)
print("Done")
def download_mnist():
for v in key_file.values():
_download(v)
def _load_label(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
labels = np.frombuffer(f.read(), np.uint8, offset=8)
print("Done")
return labels
def _load_img(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
data = data.reshape(-1, img_size)
print("Done")
return data
def _convert_numpy():
dataset = {}
dataset['train_img'] = _load_img(key_file['train_img'])
dataset['train_label'] = _load_label(key_file['train_label'])
dataset['test_img'] = _load_img(key_file['test_img'])
dataset['test_label'] = _load_label(key_file['test_label'])
return dataset
def init_mnist():
download_mnist()
dataset = _convert_numpy()
print("Creating pickle file ...")
with open(save_file, 'wb') as f:
pickle.dump(dataset, f, -1)
print("Done!")
def _change_one_hot_label(X):
T = np.zeros((X.size, 10))
for idx, row in enumerate(T):
row[X[idx]] = 1
return T
def load_mnist(normalize=True, flatten=True, one_hot_label=False):
"""读入MNIST数据集
Parameters
----------
normalize : 将图像的像素值正规化为0.0~1.0
one_hot_label :
one_hot_label为True的情况下,标签作为one-hot数组返回
one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
flatten : 是否将图像展开为一维数组
Returns
-------
(训练图像, 训练标签), (测试图像, 测试标签)
"""
if not os.path.exists(save_file):
init_mnist()
with open(save_file, 'rb') as f:
dataset = pickle.load(f)
if normalize:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].astype(np.float32)
dataset[key] /= 255.0
if one_hot_label:
dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
dataset['test_label'] = _change_one_hot_label(dataset['test_label'])
if not flatten:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].reshape(-1, 1, 28, 28)
return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])
if __name__ == '__main__':
init_mnist()
使用脚本mnist.py,读入MNIST数据
import sys, os
sys.path.append(os.pardir)
from mnist import load_mnist
# 第一次调用会花费几分钟...
(x_train,t_train),(x_test,t_test) = load_mnist(flatten=True,normalize=False)
# 输出各个数据的形状
print(x_train.shape)
print(t_train.shape)
print(x_test.shape)
print(t_test.shape)
使用PIL(Python Image Library)模块显示mnist图像
import sys, os
sys.path.append(os.pardir)
import numpy as np
from mnist import load_mnist
from PIL import Image
def img_show(img):
pil_img = Image.fromarray(np.uint8(img))
pil_img.show()
(x_train,t_train),(x_test,t_test) = load_mnist(flatten=True,normalize=False)
img = x_train[0]
label = t_train[0]
print(label)
print(img.shape)
img = img.reshape(28,28)
print(img.shape)
flatten=True读入图像是以一维numpy数组形式保存,显示时要变为原来的28×28像素形状,比如通过reshape方法,fromarray()是将保存的numpy数组的图像数据转换为PIL用的数据对象
输入层有784(28×28)个神经元,输出层有10(0~9的10类别)个神经元
此外这个神经网络有2个隐藏层,第一个隐藏层有50个神经元,第二个有100个神经元
定义三个函数:
def get_data():
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False)
return x_test, t_test
def init_network():
with open("sample_weight.pkl", 'rb') as f:
network = pickle.load(f)
return network
def predict(network, x):
W1, W2, W3 = network['W1'], network['W2'], network['W3']
b1, b2, b3 = network['b1'], network['b2'], network['b3']
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1, W2) + b2
z2 = sigmoid(a2)
a3 = np.dot(z2, W3) + b3
y = softmax(a3)
return y
用这三个函数来实现神经网络的推理过程,并评价识别精度
x, t = get_data()
network = init_network()
accuracy_cnt = 0
for i in range(len(x)):
y = predict(network, x[i])
p= np.argmax(y) # 获取概率最高的元素的索引
if p == t[i]:
accuracy_cnt += 1
print("Accuracy:" + str(float(accuracy_cnt) / len(x)))
用来打包输入多张图片,例如输入100×784形状的数据,输出数据的形状为100×10,打包式的输入数据称为批(batch)
x,t = get_data()
network = init_network()
batch_size = 100
accuracy_cnt = 0
for i in range(0,len(x),batch_size):
x_batch = x[i:i+batch_size]
y_batch = predict(network,x_batch)
p = np.argmax(y_batch,axis=1)
accuracy_cnt += np.sum(p == t[i:i+batch_size])
print("Accuracy:" + str(float(accuracy_cnt) / len(x)))