knn最近邻算法原理与实现

1. 综述
     1.1 Cover和Hart在1968年提出了最初的邻近算法
     1.2 分类(classification)算法
     1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning)

2. 例子:

          


     
          未知电影属于什么类型?






         



3. 算法详述

     3.1 步骤:
     为了判断未知实例的类别,以所有已知类别的实例作为参照
     选择参数K
     计算未知实例与所有已知实例的距离
     选择最近K个已知实例
     根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别

     3.2 细节:
     关于K
     关于距离的衡量方法:
         3.2.1 Euclidean Distance 定义
               
               
     
     
     其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)
               

     3.3 举例

     
     

4. 算法优缺点:
     4.1 算法优点
          简单
          易于理解
          容易实现
          通过对K的选择可具备丢噪音数据的健壮性
          
     4.2 算法缺点
          
          需要大量空间储存所有已知实例
          算法复杂度高(需要比较所有已知实例与要分类的实例)
          当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本


5. 改进版本
      考虑距离,根据距离加上权重
      比如: 1/d (d: 距离)

1 数据集介绍:
1. 综述
     1.1 Cover和Hart在1968年提出了最初的邻近算法
     1.2 分类(classification)算法
     1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning)

2. 例子:

          


     
          未知电影属于什么类型?






         



3. 算法详述

     3.1 步骤:
     为了判断未知实例的类别,以所有已知类别的实例作为参照
     选择参数K
     计算未知实例与所有已知实例的距离
     选择最近K个已知实例
     根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别

     3.2 细节:
     关于K
     关于距离的衡量方法:
         3.2.1 Euclidean Distance 定义
               
               
     
     
     其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)
               

     3.3 举例

     
     

4. 算法优缺点:
     4.1 算法优点
          简单
          易于理解
          容易实现
          通过对K的选择可具备丢噪音数据的健壮性
          
     4.2 算法缺点
          
          需要大量空间储存所有已知实例
          算法复杂度高(需要比较所有已知实例与要分类的实例)
          当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本


5. 改进版本
      考虑距离,根据距离加上权重
      比如: 1/d (d: 距离)



虹膜

150个实例

萼片长度,萼片宽度,花瓣长度,花瓣宽度
(sepal length, sepal width, petal length and petal width)

类别:
Iris setosa, Iris versicolor, Iris virginica.





2. 利用Python的机器学习库sklearn: SkLearnExample.py

from sklearn import neighbors
from sklearn import datasets

knn = neighbors.KNeighborsClassifier()


iris = datasets.load_iris()


print iris

knn.fit(iris.data, iris.target)

predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])

print predictedLabel




3. KNN 实现Implementation:


# Example of kNN implemented from Scratch in Python

import csv
import random
import math
import operator

def loadDataset(filename, split, trainingSet=[] , testSet=[]):
    with open(filename, 'rb') as csvfile:
        lines = csv.reader(csvfile)
        dataset = list(lines)
        for x in range(len(dataset)-1):
            for y in range(4):
                dataset[x][y] = float(dataset[x][y])
            if random.random() < split:
                trainingSet.append(dataset[x])
            else:
                testSet.append(dataset[x])


def euclideanDistance(instance1, instance2, length):
    distance = 0
    for x in range(length):
        distance += pow((instance1[x] - instance2[x]), 2)
    return math.sqrt(distance)

def getNeighbors(trainingSet, testInstance, k):
    distances = []
    length = len(testInstance)-1
    for x in range(len(trainingSet)):
        dist = euclideanDistance(testInstance, trainingSet[x], length)
        distances.append((trainingSet[x], dist))
    distances.sort(key=operator.itemgetter(1))
    neighbors = []
    for x in range(k):
        neighbors.append(distances[x][0])
    return neighbors

def getResponse(neighbors):
    classVotes = {}
    for x in range(len(neighbors)):
        response = neighbors[x][-1]
        if response in classVotes:
            classVotes[response] += 1
        else:
            classVotes[response] = 1
    sortedVotes = sorted(classVotes.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedVotes[0][0]

def getAccuracy(testSet, predictions):
    correct = 0
    for x in range(len(testSet)):
        if testSet[x][-1] == predictions[x]:
            correct += 1
    return (correct/float(len(testSet))) * 100.0
    
def main():
    # prepare data
    trainingSet=[]
    testSet=[]
    split = 0.67
    loadDataset(r'D:\MaiziEdu\DeepLearningBasics_MachineLearning\Datasets\iris.data.txt', split, trainingSet, testSet)
    print 'Train set: ' + repr(len(trainingSet))
    print 'Test set: ' + repr(len(testSet))
    # generate predictions
    predictions=[]
    k = 3
    for x in range(len(testSet)):
        neighbors = getNeighbors(trainingSet, testSet[x], k)
        result = getResponse(neighbors)
        predictions.append(result)
        print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
    accuracy = getAccuracy(testSet, predictions)
    print('Accuracy: ' + repr(accuracy) + '%')
    
main()

你可能感兴趣的:(机器学习,机器学习)