In [22]: import torch as t
In [23]: a = t.arange(1, 10).view(3,3)
In [24]: a
Out[24]:
tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
In [25]: a.trace()
Out[25]: tensor(15)
In [24]: a
Out[24]:
tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
In [26]: a.diag()
Out[26]: tensor([1, 5, 9])
In [27]: a.diag(diagonal=1)
Out[27]: tensor([2, 6])
In [28]: a.diag(diagonal=2)
Out[28]: tensor([3])
In [24]: a
Out[24]:
tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
In [30]: a.t()
Out[30]:
tensor([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])
In [31]:
注意:并不是所有的矩阵都可逆。对不可逆矩阵进行求逆会报错。
RuntimeError: "inverse_cpu" not implemented for 'Long'
In [37]: z = t.Tensor([[0,1,2], [1,1,4],[2,-1,0]])
In [38]: z
Out[38]:
tensor([[ 0., 1., 2.],
[ 1., 1., 4.],
[ 2., -1., 0.]])
In [39]: z.inverse()
Out[39]:
tensor([[ 2.0000, -1.0000, 1.0000],
[ 4.0000, -2.0000, 1.0000],
[-1.5000, 1.0000, -0.5000]])
In [40]:
In [40]: a
Out[40]:
tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
In [41]: a.triu()
Out[41]:
tensor([[1, 2, 3],
[0, 5, 6],
[0, 0, 9]])
In [43]: a.triu(1)
Out[43]:
tensor([[0, 2, 3],
[0, 0, 6],
[0, 0, 0]])
In [44]: a.triu(2)
Out[44]:
tensor([[0, 0, 3],
[0, 0, 0],
[0, 0, 0]])
In [45]:
In [46]: a = t.arange(1, 5).view(2,2)
In [47]: a
Out[47]:
tensor([[1, 2],
[3, 4]])
In [48]: b = t.arange(2, 6).view(2,2)
In [49]: b
Out[49]:
tensor([[2, 3],
[4, 5]])
In [50]: a.mm(b)
Out[50]:
tensor([[10, 13],
[22, 29]])
In [51]:
In [62]: torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1]))
Out[62]: tensor(7)
In [56]: a
Out[56]:
tensor([[1, 2],
[3, 4]])
In [57]: b
Out[57]:
tensor([[2, 3],
[4, 5]])
In [58]: a.dot(b)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-58-ac6884f5cff1> in <module>
----> 1 a.dot(b)
RuntimeError: 1D tensors expected, got 2D, 2D tensors at C:\w\b\windows\pytorch\aten\src\TH/generic/THTensorEvenMoreMath.cpp:431
这个好像与 NumPy
的 dot
不太一样
In [65]: a = np.array([[1,2], [3,4]])
In [66]: a
Out[66]:
array([[1, 2],
[3, 4]])
In [67]: b = np.array([[2,3], [4,5]])
In [68]: b
Out[68]:
array([[2, 3],
[4, 5]])
In [69]: a.dot(b)
Out[69]:
array([[10, 13],
[22, 29]])
In [70]: np.dot(a,b)
Out[70]:
array([[10, 13],
[22, 29]])
In [71]: