参考:
http://docs.opencv.org/3.0.0/db/d58/group__calib3d__fisheye.html#gga91b6a47d784dd47ea2c76ef656d7c3dca0899eaa2f96d6eed9927c4b4f4464e05
http://docs.opencv.org/master/modules/calib3d/doc/calib3d.html
opencv2.4.9 Fisheye camera model reference
Kannala J, Brandt S S. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2006, 28(8): 1335-1340.
鱼眼镜头模型
鱼眼镜头的内参模型可以表示为
,与普通镜头的内参一样,但畸变参数不同,为
,含义如下:
设(X,Y,Z)为一个三维坐标点,投影在图像上的二维坐标为(u,v),如果不考虑畸变,投影关系如下:
R和t分别代表相机外参中的旋转矩阵和平移向量。
标定流程
首先调用OpenCV的FindChessboardCorners()来寻找图像上的标定板的角点,再根据标定板的尺寸指定这些角点对应的三维点的三维坐标,再调用fisheye::calibrate()来进行标定,利用标定结果中的内参和畸变参数调用fisheye::undistortImage()对图像做去畸变操作。最后调用一张待测试的畸变图片利用标定结果进行畸变校正。
//运行环境 VS2012+opencv2.4.9
#include
#include
using namespace std;
using namespace cv;
int main()
{
ofstream fout("caliberation_result.txt"); /** 保存定标结果的文件 **/
/************************************************************************
读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化
*************************************************************************/
cout<
int image_count= 4; /**** 图像数量 ****/
Size image_size; /**** 图像的尺寸 ****/
Size board_size = Size(6,9); /**** 定标板上每行、列的角点数 ****/
vector corners; /**** 缓存每幅图像上检测到的角点 ****/
vector> corners_Seq; /**** 保存检测到的所有角点 ****/
vector image_Seq;
int count = 0;
for( int i = 0; i != image_count ; i++)
{
cout<
string imageFileName;
std::stringstream StrStm;
StrStm<
StrStm>>imageFileName;
imageFileName += ".jpg";
cv::Mat image = imread("img"+imageFileName);
image_size = image.size();
//image_size = Size(image.cols , image.rows);
/* 提取角点 */
Mat imageGray;
cvtColor(image, imageGray , CV_RGB2GRAY);
bool patternfound = findChessboardCorners(image, board_size, corners,CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE+
CALIB_CB_FAST_CHECK );
if (!patternfound)
{
cout<
exit(1);
}
else
{
/* 亚像素精确化 */
cornerSubPix(imageGray, corners, Size(11, 11), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
count = count + corners.size();
corners_Seq.push_back(corners);
}
image_Seq.push_back(image);
}
cout<
/************************************************************************
摄像机定标
*************************************************************************/
cout<
Size square_size = Size(20,20); /**** 实际测量得到的定标板上每个棋盘格的大小 ****/
vector> object_Points; /**** 保存定标板上角点的三维坐标 ****/
Mat image_points = Mat(1, count , CV_32FC2, Scalar::all(0)); /***** 保存提取的所有角点 *****/
vector point_counts; /***** 每幅图像中角点的数量 ****/
Mat intrinsic_matrix = Mat(3,3, CV_32FC1, Scalar::all(0)); /***** 摄像机内参数矩阵 ****/
Mat distortion_coeffs = Mat(1,4, CV_32FC1, Scalar::all(0)); /* 摄像机的4个畸变系数:k1,k2,p1,p2 */
vector<:mat> rotation_vectors; /* 每幅图像的旋转向量 */
vector<:mat> translation_vectors; /* 每幅图像的平移向量 */
/* 初始化定标板上角点的三维坐标 */
for (int t=0;t
{
vector tempPointSet;
for (int i=0;i
{
for (int j=0;j
{
/* 假设定标板放在世界坐标系中z=0的平面上 */
Point3f tempPoint;
tempPoint.x = i*square_size.width;
tempPoint.y = j*square_size.height;
tempPoint.z = 0;
tempPointSet.push_back(tempPoint);
}
}
object_Points.push_back(tempPointSet);
}
/* 初始化每幅图像中的角点数量,这里我们假设每幅图像中都可以看到完整的定标板 */
for (int i=0; i< image_count; i++)
{
point_counts.push_back(board_size.width*board_size.height);
}
/* 开始定标 */
calibrateCamera(object_Points, corners_Seq, image_size, intrinsic_matrix ,distortion_coeffs, rotation_vectors, translation_vectors, 0);
cout<
/************************************************************************
对定标结果进行评价
*************************************************************************/
cout<
double total_err = 0.0; /* 所有图像的平均误差的总和 */
double err = 0.0; /* 每幅图像的平均误差 */
vector image_points2; /**** 保存重新计算得到的投影点 ****/
cout<
cout<
for (int i=0; i
{
vector tempPointSet = object_Points[i];
/**** 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 ****/
projectPoints(tempPointSet, rotation_vectors[i], translation_vectors[i], intrinsic_matrix, distortion_coeffs, image_points2);
/* 计算新的投影点和旧的投影点之间的误差*/
vector tempImagePoint = corners_Seq[i];
Mat tempImagePointMat = Mat(1,tempImagePoint.size(),CV_32FC2);
Mat image_points2Mat = Mat(1,image_points2.size(), CV_32FC2);
for (size_t i = 0 ; i != tempImagePoint.size(); i++)
{
image_points2Mat.at(0,i) = Vec2f(image_points2[i].x, image_points2[i].y);
tempImagePointMat.at(0,i) = Vec2f(tempImagePoint[i].x, tempImagePoint[i].y);
}
err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
total_err += err/= point_counts[i];
cout<
fout<
}
cout<
fout<
cout<
/************************************************************************
保存定标结果
*************************************************************************/
cout<
Mat rotation_matrix = Mat(3,3,CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */
fout<
fout<
fout<
fout<
for (int i=0; i
{
fout<
fout<
/* 将旋转向量转换为相对应的旋转矩阵 */
Rodrigues(rotation_vectors[i],rotation_matrix);
fout<
fout<
fout<
fout<
}
cout<
fout<
/************************************************************************
显示定标结果
*************************************************************************/
Mat mapx = Mat(image_size,CV_32FC1);
Mat mapy = Mat(image_size,CV_32FC1);
Mat R = Mat::eye(3,3,CV_32F);
cout<
for (int i = 0 ; i != image_count ; i++)
{
cout<
Mat newCameraMatrix = Mat(3,3,CV_32FC1,Scalar::all(0));
initUndistortRectifyMap(intrinsic_matrix,distortion_coeffs,R,intrinsic_matrix,image_size,CV_32FC1,mapx,mapy);
Mat t = image_Seq[i].clone();
cv::remap(image_Seq[i],t,mapx, mapy, INTER_LINEAR);
string imageFileName;
std::stringstream StrStm;
StrStm<
StrStm>>imageFileName;
imageFileName += "_d.jpg";
imwrite(imageFileName,t);
}
cout<
/************************************************************************
测试一张图片
*************************************************************************/
cout<
Mat newCameraMatrix = Mat(3,3,CV_32FC1,Scalar::all(0));
Mat testImage = imread("test.jpg",1);
initUndistortRectifyMap(intrinsic_matrix,distortion_coeffs,R,intrinsic_matrix,image_size,CV_32FC1,mapx,mapy);
Mat t = testImage.clone();
cv::remap(testImage,t,mapx, mapy, INTER_LINEAR);
imwrite("TestOutput.jpg",t);
cout<
return 0;
}
实验结果:
第1幅图像的平均误差:0.234066像素
第2幅图像的平均误差:0.174135像素
第3幅图像的平均误差:0.230404像素
第4幅图像的平均误差:0.385148像素
总体平均误差:0.255938像素
相机内参数矩阵:
[1526.985633757815, 0, 950.2799160336148;
0, 1524.888027372896, 1626.73459851929;
0, 0, 1]
畸变系数:
[-0.2939854304014771, -0.03809991415256448, -0.0006251660855326396, 0.002477996377628106, 0.08710997961828348]
第1幅图像的旋转向量:
[-2.044082716917989;
2.112604062430628;
-0.4512837261687678]
第1幅图像的旋转矩阵:
[-0.04783928023483552, -0.9443057645861673, 0.3255733807238344;
-0.9949113651213172, 0.01611256042205056, -0.0994573323042737;
0.08867231145656364, -0.3286746238546258, -0.9402713506296841]
第1幅图像的平移向量:
[64.01021865713052;
98.56104619426411;
147.9806640258283]
第2幅图像的旋转向量:
[-1.162650885638092;
2.737696507332989;
0.1448079633779595]
第2幅图像的旋转矩阵:
[-0.6837940150923046, -0.7210082406540599, 0.1121287734387665;
-0.7051562408233225, 0.6924689388697722, 0.1524514503981244;
-0.1875644447966232, 0.02517708500816826, -0.9819295766187237]
第2幅图像的平移向量:
[92.91837801221574;
58.91364372752962;
181.052631025211]
第3幅图像的旋转向量:
[1.684131027388537;
-2.175687329421208;
-0.2403921029056955]
第3幅图像的旋转矩阵:
[-0.2115618190438919, -0.894254676073194, -0.3943984927000438;
-0.9587869203326895, 0.2681969799312525, -0.09379776838876375;
0.1896555776184723, 0.3583000896971452, -0.9141399278016584]
第3幅图像的平移向量:
[35.54570544850407;
64.77270398447031;
122.9118368955376]
第4幅图像的旋转向量:
[2.717206221016452;
1.219573939678138;
0.807283561760737]
第4幅图像的旋转矩阵:
[0.5510728665512401, 0.6808924688738628, 0.4823941765629592;
0.7100594861195663, -0.6862919236796685, 0.1575402223677423;
0.4383311783601724, 0.2557124191800546, -0.8616710142243772]
第4幅图像的平移向量:
[-45.13197759830062;
-19.42296234432086;
113.2028514971537]
畸变图像:
img1.jpg
img2.jpg
img3.jpg
img4.jpg
test.jpg
校正结果:
TestOutput.jpg