import paddle
from paddle.nn import *
#print(paddle.version)
from paddle.vision import transforms
transform = transforms.Normalize(mean=[127.5], std=[127.5], data_format=‘CHW’)
train_dataset = paddle.vision.datasets.MNIST(mode=‘train’, transform=transform)
val_dataset = paddle.vision.datasets.MNIST(mode=‘test’, transform=transform)
mnist = paddle.nn.Sequential(
Flatten(),
Linear(784, 512),
ReLU(),
Dropout(0.2),
Linear(512, 10)
)
model = paddle.Model(mnist)
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()), CrossEntropyLoss(), paddle.metric.Accuracy())
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
print(model.evaluate(val_dataset, verbose=0))