Pytorch:语义分割评价指标

class SegMetric(object):
    def __init__(self, n_classes):
        self.n_classes = n_classes
        self.confusion_matrix = np.zeros((n_classes, n_classes))

    def _fast_hist(self, label_true, label_pred, n_class):
        mask = (label_true >= 0) & (label_true < n_class)
        hist = np.bincount(
            n_class * label_true[mask].astype(int) + label_pred[mask], minlength=n_class ** 2).reshape(n_class, n_class)
        return hist

    def update(self, label_trues, label_preds):
        assert label_trues.shape == label_preds.shape
        self.confusion_matrix += self._fast_hist(label_trues, label_preds, self.n_classes)

    def get_scores(self):

        """
        Returns accuracy score evaluation result.
            - overall accuracy
            - mean accuracy
            - mean IU
            - fwavacc

        """
        hist = self.confusion_matrix
        acc = np.diag(hist).sum() / hist.sum()
        acc_cls = np.diag(hist) / hist.sum(axis=1)
        acc_cls = np.nanmean(acc_cls)
        iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist))
        mean_iu = np.nanmean(iu)
        freq = hist.sum(axis=1) / hist.sum()
        fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
        cls_iu = dict(zip(range(self.n_classes), iu))

        return (
            {
                "Overall Acc: \t": acc,
                "Mean Acc : \t": acc_cls,
                "FreqW Acc : \t": fwavacc,
                "Mean IoU : \t": mean_iu,
            },
            cls_iu,
        )

    def reset(self):
        self.confusion_matrix = np.zeros((self.n_classes, self.n_classes))

你可能感兴趣的:(pytorch)