- face-kkk
山山而川_R
face深度学习
目录一、配置环境1、新建虚拟环境2、配置环境安装包3、下载安装使用环境二、注册新人1、采集照片2、注册新人3、测试视频或摄像头三、配置文件config1、项目配置文件configs/configs.py,用于设置人脸检测模型,特征提取模型二、下面是自己测试用(个人的一个记录,不具备参考意义)MTCNN人脸检测参考项目:GitHub-Sierkinhane/mtcnn-pytorch:Afacede
- FunASR语言识别的环境安装、推理
山山而川_R
FunASRr语言xcode开发语言
目录一、环境配置1、创建虚拟环境2、安装环境及pytorch官网:pytorch下载地址3、安装funasr之前,确保已经安装了下面依赖环境:python代码调用(推荐)4、模型下载5、启动funasr服务二、客户端连接2.1html连接三、推理识别模型1、实时语音识别2、非实时语音识别一、环境配置源码地址:FunASRFunASR/README_zh.mdatmain·alibaba-damo-
- 安装线程自由(无GIL锁)Python及Pytorch方法
为什么每天的风都这么大
pythonpytorch开发语言
参考资料:https://py-free-threading.github.io/installing_cpython/https://github.com/pytorch/pytorch/issues/130249https://download.pytorch.org/whl/torch/截至当前(2025.1.22),最新的线程自由Python版本为13.1,因此下面的方法适用于该版本安装P
- Linux系统总结
小马不敲代码
后端linux服务器
Linux基础操作系统操作系统OperatingSystem简称OS,是软件的一部分,它是硬件基础上的第一层软件,是硬件和其它软件沟通的桥梁。操作系统会控制其他程序运行,管理系统资源,提供最基本的计算功能,如管理及配置内存、决定系统资源供需的优先次序等,同时还提供一些基本的服务程序。什么是LinuxLinux系统内核与Linux发行套件的区别Linux系统内核指的是由LinusTorvalds负责
- 如何在 PyTorch 分布式训练中使用 TORCH_DISTRIBUTED_DEBUG=INFO 进行调试
weixin_48705841
pytorch分布式人工智能
如何在PyTorch分布式训练中使用TORCH_DISTRIBUTED_DEBUG=INFO进行调试在使用PyTorch进行分布式训练时,调试分布式训练过程中的问题可能非常棘手。尤其是在多卡、多节点的训练环境中,常常会遇到通信延迟、同步错误等问题。为了帮助调试这些问题,PyTorch提供了一个非常有用的环境变量TORCH_DISTRIBUTED_DEBUG,通过设置它,你可以在控制台输出更多的调试
- 在 PyTorch 训练中使用 `tqdm` 显示进度条
weixin_48705841
pytorch人工智能python
在PyTorch训练中使用tqdm显示进度条在深度学习的训练过程中,实时查看训练进度是非常重要的,它可以帮助我们更好地理解训练的效率,并及时调整模型或优化参数。使用tqdm库来为训练过程添加进度条是一个非常有效的方式,本文将介绍如何在PyTorch中结合tqdm来动态显示训练进度。1.安装tqdm库首先,如果你还没有安装tqdm,可以通过pip命令进行安装:pipinstalltqdmtqdm是一
- 【在 PyTorch 中使用 tqdm 显示训练进度条,并解决常见错误TypeError: ‘module‘ object is not callable】
weixin_48705841
人工智能
在PyTorch中使用tqdm显示训练进度条,并解决常见错误TypeError:'module'objectisnotcallable在进行深度学习模型训练时,尤其是在处理大规模数据时,实时了解训练过程中的进展是非常重要的。为了实现这一点,我们可以使用tqdm库,它可以非常方便地为你提供进度条显示。1.什么是tqdm?TQDM是一个快速、可扩展的Python进度条库。它可以用来显示迭代的进度,帮助
- 昇腾910-PyTorch 实现 GoogleNet图像分类
深度学习图像识别
PyTorch实现GoogleNet用于图像分类本实验主要介绍了如何在昇腾上,使用pytorch对经典的GoogleNet模型在公开的CIFAR10数据集进行分类训练的实战讲解。内容包括GoogleNet模型创新点介绍、GoogleNet网络架构剖析与GoogleNet网络模型代码实战分析等等。本实验的目录结构安排如下所示:GoogleNet网络模型创新点介绍GoogleNet的网络架构剖析Goo
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 深度学习从入门到精通:全面指南
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《深度学习从入门到精通:全面指南》文章目录《深度学习从入门到精通:全面指南》文章关键词文章摘要引言第一部分:深度学习基础入门第1章:深度学习概述1.1深度学习的基本概念1.2深度学习的发展历程1.3深度学习的基本原理神经网络前向传播反向传播第2章:深度学习框架入门2.1TensorFlow入门TensorFlow环境搭建TensorFlow基本数据结构2.2PyTorch入门PyTorch环境搭建
- 如何在Python中安装GDAL库(gdal)
研仔mm
python开发语言
具体安装步骤:1、下载与Python版本相匹配的.whl文件:(如:GDAL-3.4.3-cp38-cp38-win_amd64.whl)cp38代表python3.8版本,win_amd64代表你的电脑是64位的2、安装GDAL:安装到python软件安装目录下的scripts文件夹里:D:\app\Anaconda\envs\pytorch\Scripts(pytorch为我自己创建的虚拟环境
- 安装CUDA Cudnn Pytorch(GPU版本)步骤
学乐乐
pytorch人工智能python
一.先看自己的电脑NVIDIA支持CUDA版本是多少?1.打开NVIDIA控制面板2.点击帮助---系统信息--组件我的支持CUDA11.6二.再看支持Pytorch的CUDA版本三.打开CUDA官网下载CUDA11.6下载好后,安装选择自定义然后安装位置(先去F盘建个CUDA-manger文件夹然后在里面建个CUDA11.6文件夹再在里面建立CUDA1CUDA2这两个文件夹前两个位置选到CUDA
- 【深度学习】Pytorch:在 ResNet 中加入注意力机制
T0uken
深度学习pytorch人工智能
在这篇教程中,我们将介绍如何在ResNet网络中加入注意力机制模块。我们将通过对标准ResNet50进行改进,向网络中添加两个自定义的注意力模块,并展示如何实现这一过程。为什么要加入注意力机制注意力机制可以帮助神经网络专注于图像中重要的特征区域,从而提高模型的性能。在卷积神经网络中,加入注意力机制能够有效增强特征提取能力,减少冗余信息的干扰,尤其在处理复杂图像时,能够提升网络的表现。在本教程中,我
- Pytorch 自学笔记(三):利用自定义文本数据集构建Dataset和DataLoader
JimmyTotoro
Pytorch自学笔记pytorch笔记人工智能
Pytorch自学笔记(三)1.Dataset与DataLoader1.1torch.utils.data.Dataset1.2torch.utils.data.DataLoaderPytorch自学笔记系列的第三篇。针对Pytorch的Dataset和DataLoader进行简单的介绍,同时,介绍如何使用自定义文本数据集构建Dataset和DataLoader,以实现数据集的随机采样与batch
- Docker部署nnunetv2简洁教程
Tiandaren
模型部署docker容器运维pytorch人工智能深度学习python
前言:感觉一些教程没必要说那么多,直接贴出重点的配置文件。如果有不懂的,可以把此文档丢给gpt,配合自己的环境一同服用。首先,在nnunet路径下创建一个Dockerfile。由于我已经完成了nnUNet的训练,所以不需要将相关数据全部上传到容器中,而是只保留源码。#使用适当的基础镜像(如pytorch官方镜像)FROMpytorch/pytorch:latest#更新apt-get并安装必要的工
- Pytorch: torch.diag()创建对角线张量
湫兮之风
pytorchpytorch人工智能python
torch.diag()torch.diag是PyTorch中的一个函数,用于从给定的矩阵中提取对角线元素,或者构造一个以给定对角线元素为值的对角矩阵。这个函数对于矩阵分解和转换等操作非常重要。如果输入是一个向量(1D张量),torch.diag会返回一个以该向量为对角线元素的2D方阵。如果输入是一个矩阵(2D张量),则返回一个包含输入矩阵对角线元素的1D张量。torch.diag还允许你指定对角
- python中常用排序操作——sort方法和sorted函数的使用,超详细,内置模板代码!!!
盲敲代码的阿豪
python实用知识点pythonsortedsort排序
文章目录前言1、sort()方法的使用1.1基础操作1.2操作进阶(自定义排序的对象)2、sorted()函数的使用2.1基础操作2.2操作进行(自定义排序的对象)3、扩展:排序案例模板代码前言在Python中,排序的方法有多种,其中最常用的是使用内置的sort()方法和sorted()函数,接下来我将通过各种案例带领大家轻松学会这两种方法,同时还会扩展一些实用的排序案例模板代码。1、sort()
- Go的基础操作
qq_50996930
Go语言学习专栏golang后端
helloworld通过一段简单go代码打印helloworld。packagemainimport("fmt")funcmain(){fmt.Println("Hello,Golang!")}我们来逐行解析一下:packagemain:声明了当前这个go文件所在的包,Go用包来组织代码,一般一个文件夹是一个包,包内可以暴露类型供其他包使用。import(“fmt”):fmt就是go语言的一个标准
- 深入解析框架适配开发:基于CANN平台的自定义算子开发与第三方框架适配全流程详解
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能
深入解析框架适配开发:基于CANN平台的自定义算子开发与第三方框架适配全流程详解随着深度学习的发展,不同的深度学习框架如TensorFlow、PyTorch、ONNX等在AI开发者社区中占据了重要地位。然而,针对某些硬件平台(如华为昇腾AI处理器),算子库中的算子并非都已经适配了所有主流框架。为了解决这一问题,框架适配开发应运而生,它允许开发者将已存在于算子库中的算子适配到其他未支持的第三方框架上
- 【Python】成功解决ValueError: zero-size array to reduction operation minimum which has no identity
高斯小哥
BUG解决方案合集python新手入门学习debug
【Python】成功解决ValueError:zero-sizearraytoreductionoperationminimumwhichhasnoidentity个人主页:高斯小哥高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程希望得到您的订阅和支持~创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、
- 【深度学习】CrossEntropyLoss需要手动softmax吗?
zz的学习笔记本
深度学习深度学习人工智能
【深度学习】CrossEntropyLoss需要手动softmax吗?问题:CrossEntropyLoss需要手动softmax吗?答案:不需要官方文档代码解释问题:CrossEntropyLoss需要手动softmax吗?之前用pytorch实现自己的网络时,使用CrossEntropyLoss的时候将网路输出经softmax激活层后再计算CrossEntropyLoss。答案:不需要调用了损
- PyTorch 基础数据集:从理论到实践的深度学习基石
那年一路北
Pytorch理论+实践深度学习pytorch人工智能
一、引言深度学习作为当今人工智能领域的核心技术,在图像识别、自然语言处理、语音识别等众多领域取得了令人瞩目的成果。而在深度学习的体系中,数据扮演着举足轻重的角色,它是模型训练的基础,如同建筑的基石,决定了模型的性能和泛化能力。PyTorch作为当下最流行的深度学习框架之一,为开发者提供了丰富且强大的工具来处理数据集。本文将深入探讨PyTorch中的基础数据集,从深度学习中数据的重要性出发,详细介绍
- GarageBand:录制与编辑音频轨道教程_2024-07-17_16-51-15.Tex
chenjj4003
游戏开发2音视频自动化运维游戏unity
GarageBand:录制与编辑音频轨道教程GarageBand基础操作启动GarageBand并创建新项目打开GarageBand在Mac上,点击Dock栏中的GarageBand图标或通过Finder中的应用程序文件夹找到并启动GarageBand。在iOS设备上,从主屏幕找到GarageBand应用并点击打开。创建新项目选择“文件”>“新建”或点击屏幕左上角的“+”按钮。在弹出的窗口中,选择
- 【深度学习】Pytorch:导入导出模型参数
T0uken
深度学习pytorch人工智能
PyTorch是深度学习领域中广泛使用的框架,熟练掌握其模型参数的管理对于模型训练、推理以及部署非常重要。本文将全面讲解PyTorch中关于模型参数的操作,包括如何导出、导入以及如何下载模型参数。什么是模型参数模型参数是指深度学习模型中需要通过训练来优化的变量,如神经网络中的权重和偏置。这些参数存储在PyTorch的torch.nn.Module对象中,通过以下方式访问:importtorchim
- 使用 PyTorch 从头开始构建您自己的 Llama 3 架构
子然在打码
pytorchllama人工智能
https://www.aisolink.com/build-your-own-llama-3-architecture-from-scratch-using-pytorch全文摘要本文提供了一个详细的指南,介绍如何使用PyTorch从头开始构建Llama3模型的完整架构,并对自定义数据集进行训练和推理。文章涵盖了构建输入块、解码器块和输出块的步骤,并提供了相应的代码示例。最终目标是构建一个功能齐
- Windchill配置-数据库相关的基础操作
这城有海
系统配置Windchill二开数据库
数据库相关的基础操作一、数据库访问1.1访问方式1.2数据库服务器1.2.1Windows/Linux1.2.2监听相关命令1.2.3进入sqlplus的方式1.2.4基础SQL命令二、常用的SQL语句2.1数据库表空间使用情况查询2.1.1统计2.1.2明细2.2数据库表空间扩容2.2.1单机环境2.2.2集群环境(OracleRAC)2.3游标查询2.3.1查询最大游标数和最大打开游标数2.3
- 在PyTorch框架上训练ImageNet时,Dataloader加载速度慢怎么解决?
cda2024
pytorch人工智能python
在深度学习领域,PyTorch因其灵活性和易用性而受到广泛欢迎。然而,在实际应用中,特别是在处理大规模数据集如ImageNet时,Dataloader的加载速度往往成为瓶颈。本文将深入探讨这一问题,并提供多种解决方案,帮助你在PyTorch框架上高效地训练ImageNet。1.问题背景ImageNet是一个包含超过1400万张图像的大规模数据集,被广泛用于图像分类任务的研究。在PyTorch中,D
- AscendC从入门到精通系列(四)使用Pybind调用AscendC算子
人工智能深度学习
如果已经通过AscendC编程语言实现了算子,那该如何通过pybind进行调用呢?1Pybind调用介绍通过PyTorch框架进行模型的训练、推理时,会调用很多算子进行计算,其中的调用方式与kernel编译流程有关。对于自定义算子工程,需要使用PyTorchAscendAdapter中的OP-Plugin算子插件对功能进行扩展,让torch可以直接调用自定义算子包中的算子,详细内容可以参考PyTo
- torch.utils.data.Dataset()和torch.utils.data.DataLoader()
我叫罗泽南
深度学习python
torch.utils.data.Dataset()和torch.utils.data.DataLoader()是Pytorch中处理数据集和批量加载数据的重要工具。下面将详细介绍它们的作用、用法,并通过一个简单的例子来演示如何使用它们。torch.utils.data.Dataset()Dataset是Pytorch数据加载的基类,用于表示一个数据集。用户可以继承Dataset类并实现其两个方法
- 深入剖析:Unix 系统管理的高级实践与技巧
Echo_Wish
让你快速入坑运维运维探秘unix服务器
深入剖析:Unix系统管理的高级实践与技巧作为一名系统管理员,掌握Unix系统的基础操作只是起点。高级实践要求你不仅能够高效处理复杂任务,还需优化系统性能、自动化日常操作,并确保系统的安全性与可靠性。本文将带你探讨Unix系统管理的一些高级实践,结合实际案例与代码,帮助你提升技能。一、系统性能优化:从监控到调优1.性能监控:识别瓶颈性能优化的第一步是监控系统,找出瓶颈所在。Unix提供了一些强大的
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分