决策树算法实现

一、决策树介绍

决策树是一种树模型从根节点开始一步步走到叶子节点(决策过程),所有的数据最终都会落到叶子节点,这种算法既可以做分类也可以做回归。

决策树算法实现_第1张图片

决策树的组成:结点和有向边。结点的类型又可以分成三种:根结点(第一个选择的分支的属性)、中间节点(继根节点后的非叶子结点)、叶子结点(表示最终的决策结果)

在本次案例主要讲述分类决策树模型。

二、构造决策树的基本流程

决策树算法实现_第2张图片

 算法基本流程:

  1. 将所有数据放在根节点
  2. 选择一个最优的特征,根据这个特征将训练数据分割成子集,使得各个子集在当前条件下有一个最好的分类
  3. 递归下去,直到所有数据子集都被基本正确分类、或者没有合适的特征为止
  • 递归返回的三个条件:
  • (1)当前结点点包含的样本全部属于同一类别
  • (2)当前属性集为空,或者是所有样本在所有属性的取值均相同,无法划分
  • (3)当前结点包含的样本集合为空

三、最优特征的选择

前言:决策树学习的关键在于如何选择最优划分属性。一般而言随着划分过程不断进行,我们希望决策树的分支结点 所包含的样本尽可能属于同一类别,即结点的“纯度 ”越来越高。

衡量样本集合纯度---信息熵
熵信息:熵是表示随机变量不确定性的度量,即物体内部的混乱程度。假定当前样本集合D中第k类样本所占的比例为pk(k = 1,2,...,|Y|),则D的信息熵定义为:
决策树算法实现_第3张图片

 Ent(D)的值越小,则D的纯度越高

一个栗子:
      A集合[1,1,1,1,1,1,1,1,2,2]
      B集合[1,2,3,4,5,6,7,8,9,1]
      显然A集合的熵值要低,因为A里面只有两种类别,相对稳定一些。 而B中类别太多了,熵值就会大很多。
如何决策一个节点的选择呢?
信息增益:表示特征X使得类Y的不确定性减少的程度。
离散属性a有V个可能的取值{a1, a2, ..., aV},用a来进行划分,则会产 生V个分支结点,其中第v个分支结点包含了D中所有在属性a上取值为 av的样本,记为Dv。则可计算出用属性a对样本集D进行划分所获得的 “信息增益”:
决策树算法实现_第4张图片

信息增益特点:

信息增益大的特征具有更强的分类能力,如果某个特征的信息增益为0,则表示其没有什么分类能力
信息增益准则倾向于选择取值较多的特征问题,导致生成的决策树没有泛化能力  -> 使用信息增益比

四、python实现决策树

这里的数据集取的是毕业生薪资等级的数据集。

professional:专业编号;gender:性别(1:男;0:女);age:年龄;socialSkill:社交能力;professionalSkill:专业能力;

isJob:薪资等级标签

这里只抽取了前十个训练样本。

决策树算法实现_第5张图片

4.1数据集准备:

def createDataSet():
    data = pd.read_csv('movie.csv')
    print(np.array(data[0:10]))
    # 将pandas转化成list
    dataSet = np.array(data[0:10]).tolist()
    print(type(dataSet))
    labels = ['professional', 'gender', 'age', 'socialSkill', 'professionalSkill']
    return dataSet, labels

 4.2 计算信息熵

# 计算数据集的信息熵 Ent(D)
def calcShannonEnt(dataset):
    numexamples = len(dataset)
    labelCounts = {}
    # 利用字典对标签的类别进行统计
    for featVec in dataset:
        currentlabel = featVec[-1]
        if currentlabel not in labelCounts.keys():
            labelCounts[currentlabel] = 0
        labelCounts[currentlabel] += 1
    # 依照信息熵的公式求 Ent(D)
    shannonEnt = 0
    for key in labelCounts:
        prop = float(labelCounts[key]) / numexamples
        shannonEnt -= prop * log(prop, 2)
    return shannonEnt

4.3 根据特征划分数据集

# 根据给定规则划分数据集
def splitDataSet(dataset, axis, val):
    retDataSet = []
    for featVec in dataset:
        # 依据给定特征匹配,划分数据集
        if featVec[axis] == val:
            # reducedFeatVec存储去掉axis特征的集合
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis + 1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

4.4 计算信息增益,并返回最大的信息增益

# 依照最大信息增益的 feature,选择最优特征
def chooseBestFeatureToSplit(dataset):
    # 特征数量
    numFeatures = len(dataset[0]) - 1
    baseEntropy = calcShannonEnt(dataset)
    # 初始化信息增益
    bestInfoGain = 0
    bestFeature = -1
    for i in range(numFeatures):
        # 获取dataset的第i列所有特征
        featList = [example[i] for example in dataset]
        # print(featList)
        # list转为集合 set,set中的元素不可以重复
        uniqueVals = set(featList)
        newEntropy = 0
        # 依据特征划分数据集,根据公式计算对应特征的信息增益
        for val in uniqueVals:
            subDataSet = splitDataSet(dataset, i, val)
            # print(subDataSet)
            # print(len(subDataSet))
            prob = len(subDataSet) / float(len(dataset))
            # print(prob)
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        # 选出最大的信息增益以及对应的特征
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

 4.5 利用递归的方法构造决策树

# 创建决策树
def createTree(dataset, labels, featLabels):
    # 数据集的标签
    classList = [example[-1] for example in dataset]
    print(classList)
    # 如果要进分类的标签相同,直接返回,无需分类
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataset[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataset)
    bestFeatLabel = labels[bestFeat]
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel: {}}
    del labels[bestFeat]
    featValue = [example[bestFeat] for example in dataset]
    uniqueVals = set(featValue)
    for value in uniqueVals:
        sublabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataset, bestFeat, value), sublabels, featLabels)
    return myTree

# 统计classList中出现最多的元素
def majorityCnt(classList):
    classCount = {}
    # 统计classList中每个元素出现的次数
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    # 字典降序排列
    sortedclassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedclassCount[0][0]

 4.6使用matplotlibt绘制决策树

# 获得树的叶子节点数目
def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs


# 获得树的深度
def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth


# 绘制节点
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")
    font = FontProperties(fname=r"c:\windows\fonts\simsunb.ttf", size=14)
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, FontProperties=font)


# 绘制划分属性
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)


# 绘制决策树
def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")
    leafNode = dict(boxstyle="round4", fc="0.8")
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = next(iter(myTree))
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD


def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')  # 创建fig
    fig.clf()  # 清空fig
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)  # 去掉x、y轴
    plotTree.totalW = float(getNumLeafs(inTree))  # 获取决策树叶结点数目
    plotTree.totalD = float(getTreeDepth(inTree))  # 获取决策树层数
    plotTree.xOff = -0.5 / plotTree.totalW;
    plotTree.yOff = 1.0;  # x偏移
    plotTree(inTree, (0.5, 1.0), '')  # 绘制决策树
    plt.show()

完整代码:

# -*- coding: UTF-8 -*-
import numpy as np
import pandas as pd
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
from math import log
import operator


def createDataSet():
    data = pd.read_csv('movie.csv')
    print(np.array(data[0:10]))
    # 将pandas转化成list
    dataSet = np.array(data[0:10]).tolist()
    print(type(dataSet))
    labels = ['professional', 'gender', 'age', 'socialSkill', 'professionalSkill']
    return dataSet, labels


# 计算数据集的信息熵 Ent(D)
def calcShannonEnt(dataset):
    numexamples = len(dataset)
    labelCounts = {}
    # 利用字典对标签的类别进行统计
    for featVec in dataset:
        currentlabel = featVec[-1]
        if currentlabel not in labelCounts.keys():
            labelCounts[currentlabel] = 0
        labelCounts[currentlabel] += 1
    # 依照信息熵的公式求 Ent(D)
    shannonEnt = 0
    for key in labelCounts:
        prop = float(labelCounts[key]) / numexamples
        shannonEnt -= prop * log(prop, 2)
    return shannonEnt


# 依照最大信息增益的 feature,选择最优特征
def chooseBestFeatureToSplit(dataset):
    # 特征数量
    numFeatures = len(dataset[0]) - 1
    baseEntropy = calcShannonEnt(dataset)
    # 初始化信息增益
    bestInfoGain = 0
    bestFeature = -1
    for i in range(numFeatures):
        # 获取dataset的第i列所有特征
        featList = [example[i] for example in dataset]
        # print(featList)
        # list转为集合 set,set中的元素不可以重复
        uniqueVals = set(featList)
        newEntropy = 0
        # 依据特征划分数据集,根据公式计算对应特征的信息增益
        for val in uniqueVals:
            subDataSet = splitDataSet(dataset, i, val)
            # print(subDataSet)
            # print(len(subDataSet))
            prob = len(subDataSet) / float(len(dataset))
            # print(prob)
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        # 选出最大的信息增益以及对应的特征
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature


# 根据给定规则划分数据集
def splitDataSet(dataset, axis, val):
    retDataSet = []
    for featVec in dataset:
        # 依据给定特征匹配,划分数据集
        if featVec[axis] == val:
            # reducedFeatVec存储去掉axis特征的集合
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis + 1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet



# 创建决策树
def createTree(dataset, labels, featLabels):
    # 数据集的标签
    classList = [example[-1] for example in dataset]
    print(classList)
    # 如果要进分类的标签相同,直接返回,无需分类
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataset[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataset)
    bestFeatLabel = labels[bestFeat]
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel: {}}
    del labels[bestFeat]
    featValue = [example[bestFeat] for example in dataset]
    uniqueVals = set(featValue)
    for value in uniqueVals:
        sublabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataset, bestFeat, value), sublabels, featLabels)
    return myTree

# 统计classList中出现最多的元素
def majorityCnt(classList):
    classCount = {}
    # 统计classList中每个元素出现的次数
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    # 字典降序排列
    sortedclassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedclassCount[0][0]

# 获得树的叶子节点数目
def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs


# 获得树的深度
def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth


# 绘制节点
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")
    font = FontProperties(fname=r"c:\windows\fonts\simsunb.ttf", size=14)
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, FontProperties=font)


# 绘制划分属性
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)


# 绘制决策树
def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")
    leafNode = dict(boxstyle="round4", fc="0.8")
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = next(iter(myTree))
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD


def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')  # 创建fig
    fig.clf()  # 清空fig
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)  # 去掉x、y轴
    plotTree.totalW = float(getNumLeafs(inTree))  # 获取决策树叶结点数目
    plotTree.totalD = float(getTreeDepth(inTree))  # 获取决策树层数
    plotTree.xOff = -0.5 / plotTree.totalW;
    plotTree.yOff = 1.0;  # x偏移
    plotTree(inTree, (0.5, 1.0), '')  # 绘制决策树
    plt.show()


if __name__ == '__main__':
    dataset, labels = createDataSet()
    featLabels = []
    myTree = createTree(dataset, labels, featLabels)
    createPlot(myTree)

运行结果:

决策树算法实现_第6张图片

出现的原因:信息增益有个缺点就是对可取数值多的属性有偏好,举个例子讲,还是考虑西瓜数据集,如果我们把“编号”这一列当做属性也考虑在内,那么可以计算出它的信息增益为0.998,远远大于其他的候选属性,因为“编号”有17个可取的数值,产生17个分支,每个分支结点仅包含一个样本,显然这些分支结点的纯度最大。但是,这样的决策树不具有任何泛化能力。而在我所选择的数据集中,前十条数据socialSkill中就有9条数据不一样,导致生成了以可泛化能力不强的决策树。

 在更改了数据集之后的决策树

决策树算法实现_第7张图片

决策树算法实现_第8张图片

你可能感兴趣的:(算法,决策树)