GBDT 多目标输出,网格搜索思想,寻找最优参数

# -*- coding: utf-8 -*-#

#-------------------------------------------------------------------------------
# Name:         参数优化
# Description:  
# Author:       shichao, 联系方式: 961771865
# Date:         2019/2/7
#-------------------------------------------------------------------------------

import os
import numpy as np
import pandas as pd
import time
from sklearn.multioutput import MultiOutputRegressor
import matplotlib.pyplot as plt



# 核心代码,设置显示的最大列、宽等参数,消掉打印不完全中间的省略号
pd.set_option('display.max_columns', 1000)
pd.set_option('display.width', 1000)
pd.set_option('display.max_colwidth', 1000)



# 设置交叉验证集的折数
from sklearn.model_selection import cross_val_score
# 时间序列分割
from sklearn.model_selection import TimeSeriesSplit
tscv = TimeSeriesSplit(max_train_size=None, n_splits=13)
def cv_mae(model, train_X, train_y):
    mae= np.mean(-cross_val_score(model, train_X, train_y, scoring="neg_mean_absolute_error", cv = tscv))
    return(mae)


# 画图:参数与交叉验证集上的折线图
def parameter_plot(x_list, y_list, x_title, y_title, plot_name):
    # 参数优化折线图
    #plt.figure(1, figsize=(26, 13))
    plt.plot(x_list, y_list, marker='o')
    plt.xlabel(x_title)
    plt.ylabel(y_title)
    plt.title(plot_name)
    plt.show()



# 参数优化: GBDT
def parameter_optimize(train_X, train_y):
    from sklearn.ensemble import GradientBoostingRegressor
    # 回归树的颗数
    cv_mae_list = []
    n_estimator_list = []

    # 暴力搜索,选取最优参数 n_estimators : 295
    # parameter_name = 'n_estimators'
    # n_estimators = [x for x in range(20, 310, 5)]
    # for n_estimator in n_estimators:
    #     boost_initialize_params = {'n_estimators': n_estimator, 'learning_rate': 0.1, 'subsample': 1.0, 'loss': 'ls'}
    #     base_initialize_params = {'max_depth': 3, 'min_samples_split': 2, 'alpha': 0.9, 'random_state': 42}
    #     initialize_params = {}
    #     initialize_params.update(boost_initialize_params)
    #     initialize_params.update(base_initialize_params)
    #     model = GradientBoostingRegressor()
    #     mult_model = MultiOutputRegressor(model)
    #     cv_mae_model = cv_mae(mult_model, train_X, train_y)
    #     cv_mae_list.append(cv_mae_model)
    #     n_estimator_list.append(n_estimator)
    #     print ('{0} :{1}  , 交叉验证平均绝对误差:{2}'.format((parameter_name),(n_estimator),(cv_mae_model)))
    # parameter_plot(n_estimator_list, cv_mae_list, 'n_estimators', 'CV_MAE', 'n_estimators parameter optimization')

    # 暴力搜索:选取最优参数 learning_rate : 0.61
    # n_learning_rate = list(np.arange(0.01, 1.1, 0.1))
    # parameter_name = 'learning_rate'
    # for n_estimator in n_learning_rate:
    #     boost_initialize_params = {'n_estimators': 295, 'learning_rate': n_estimator, 'subsample': 1.0, 'loss': 'ls'}
    #     base_initialize_params = {'max_depth': 3, 'min_samples_split': 2, 'alpha': 0.9, 'random_state': 42}
    #     initialize_params = {}
    #     initialize_params.update(boost_initialize_params)
    #     initialize_params.update(base_initialize_params)
    #     model = GradientBoostingRegressor()
    #     mult_model = MultiOutputRegressor(model)
    #     cv_mae_model = cv_mae(mult_model, train_X, train_y)
    #     cv_mae_list.append(cv_mae_model)
    #     n_estimator_list.append(n_estimator)
    #     print('{0} :{1}  , 交叉验证平均绝对误差:{2}'.format((parameter_name), (n_estimator), (cv_mae_model)))
    # parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')

    # # 暴力搜索:选取最优参数 subsample : 0.1
    # subsample = list(np.arange(0, 1.1, 0.1))
    # parameter_name = 'subsample'
    # for n_estimator in subsample:
    #     boost_initialize_params = {'n_estimators': 295, 'learning_rate': 0.61, 'subsample': n_estimator, 'loss': 'ls'}
    #     base_initialize_params = {'max_depth': 3, 'min_samples_split': 2, 'alpha': 0.9, 'random_state': 42}
    #     initialize_params = {}
    #     initialize_params.update(boost_initialize_params)
    #     initialize_params.update(base_initialize_params)
    #     model = GradientBoostingRegressor()
    #     mult_model = MultiOutputRegressor(model)
    #     cv_mae_model = cv_mae(mult_model, train_X, train_y)
    #     cv_mae_list.append(cv_mae_model)
    #     n_estimator_list.append(n_estimator)
    #     print('{0} :{1}  , 交叉验证平均绝对误差:{2}'.format((parameter_name), (n_estimator), (cv_mae_model)))
    # parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')

    # 暴力搜索:选取最优参数 loss : 'quantile'
    # loss = ['ls', 'lad', 'huber', 'quantile']
    # parameter_name = 'loss'
    # for n_estimator in loss:
    #     boost_initialize_params = {'n_estimators': 295, 'learning_rate': 0.61, 'subsample': 0.1, 'loss': n_estimator}
    #     base_initialize_params = {'max_depth': 3, 'min_samples_split': 2, 'alpha': 0.9, 'random_state': 42}
    #     initialize_params = {}
    #     initialize_params.update(boost_initialize_params)
    #     initialize_params.update(base_initialize_params)
    #     model = GradientBoostingRegressor()
    #     mult_model = MultiOutputRegressor(model)
    #     cv_mae_model = cv_mae(mult_model, train_X, train_y)
    #     cv_mae_list.append(cv_mae_model)
    #     n_estimator_list.append(n_estimator)
    #     print('{0} :{1}  , 交叉验证平均绝对误差:{2}'.format((parameter_name), (n_estimator), (cv_mae_model)))
    # parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')

    # 暴力搜索:选取最优参数 max_depth : 6
    # parameter_name = 'max_depth'
    # max_depth = list(np.arange(1, 40, 1))
    # for n_estimator in max_depth:
    #     boost_initialize_params = {'n_estimators': 295, 'learning_rate': 0.61, 'subsample': 1.0, 'loss': 'quantile'}
    #     base_initialize_params = {'max_depth': 3, 'min_samples_split': 2, 'alpha': 0.9, 'random_state': 42}
    #     initialize_params = {}
    #     initialize_params.update(boost_initialize_params)
    #     initialize_params.update(base_initialize_params)
    #     model = GradientBoostingRegressor()
    #     mult_model = MultiOutputRegressor(model)
    #     cv_mae_model = cv_mae(mult_model, train_X, train_y)
    #     cv_mae_list.append(cv_mae_model)
    #     n_estimator_list.append(n_estimator)
    #     print('{0} :{1}  , 交叉验证平均绝对误差:{2}'.format((parameter_name), (n_estimator), (cv_mae_model)))
    # parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')

    # 暴力搜索:选取最优参数 min_samples_split : 0.51
    # parameter_name = 'min_samples_split'
    # min_samples_split = list(np.arange(0.01, 3, 0.1))
    # for n_estimator in min_samples_split:
    #     boost_initialize_params = {'n_estimators': 295, 'learning_rate': 0.61, 'subsample': 1.0, 'loss': 'quantile'}
    #     base_initialize_params = {'max_depth': 6, 'min_samples_split': n_estimator, 'alpha': 0.9, 'random_state': 42}
    #     initialize_params = {}
    #     initialize_params.update(boost_initialize_params)
    #     initialize_params.update(base_initialize_params)
    #     model = GradientBoostingRegressor()
    #     mult_model = MultiOutputRegressor(model)
    #     cv_mae_model = cv_mae(mult_model, train_X, train_y)
    #     cv_mae_list.append(cv_mae_model)
    #     n_estimator_list.append(n_estimator)
    #     print('{0} :{1}  , 交叉验证平均绝对误差:{2}'.format((parameter_name), (n_estimator), (cv_mae_model)))
    # parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')

    #暴力搜索:选取最优参数 alpha: 0.11
    parameter_name = 'alpha'
    alpha = list(np.arange(0.01, 1, 0.1))
    for n_estimator in alpha:
        boost_initialize_params = {'n_estimators': 295, 'learning_rate': 0.61, 'subsample': 1.0, 'loss': 'quantile'}
        base_initialize_params = {'max_depth': 6, 'min_samples_split': 0.51, 'alpha':  n_estimator, 'random_state': 42}
        initialize_params = {}
        initialize_params.update(boost_initialize_params)
        initialize_params.update(base_initialize_params)
        model = GradientBoostingRegressor()
        mult_model = MultiOutputRegressor(model)
        cv_mae_model = cv_mae(mult_model, train_X, train_y)
        cv_mae_list.append(cv_mae_model)
        n_estimator_list.append(n_estimator)
        print('{0} :{1}  , 交叉验证平均绝对误差:{2}'.format((parameter_name), (n_estimator), (cv_mae_model)))
    parameter_plot(n_estimator_list, cv_mae_list, parameter_name, 'CV_MAE', parameter_name + ' parameter optimization')

    print ()




下图是对学习率的选择过程,交叉验证平均绝对误差最小,对应的就是最优学习率。

GBDT 多目标输出,网格搜索思想,寻找最优参数_第1张图片

你可能感兴趣的:(机器学习)