参数估计:点估计和区间估计

参数估计就是根据样本统计量的数值对总体参数进行估计的过程。根据参数估计的性质不同,可以分成两种类型:点估计和区间估计。

点估计

点估计就是用样本统计量的某一具体数值直接推断未知的总体参数。例如,在进行有关小学生身高的研究中,随机抽取1000名小学生并计算出他们的平均身高为1.46米。如果直接用这个1.46米代表所有小学生的平均身高,那么这种估计方法就是点估计。
对总体参数进行点估计常用的方法有两种:矩估计与最大似然估计,其中最大似然估计就是我们实际中使用非常广泛的一种方法。 按这两种方法对总体参数进行点估计,能够得到相对准确的结果。如用样本均值X估计总体均值,或者用样本标准差S估计总体标准差σ
点估计有一个不足之处,即这种估计方法不能提供估计参数的估计误差大小。对于一个总体来说,它的总体参数是一个常数值,而它的样本统计量却是随机变量。当用随机变量去估计常数值时,误差是不可避免的,只用一个样本数值去估计总体参数是要冒很大风险的。因为这种误差风险的存在,并且风险的大小还未知,所以,点估计主要为许多定性研究提供一定的参考数据,或在对总体参数要求不精确时使用,而在需要用精确总体参数的数据进行决策时则很少使用。

区间估计

区间估计就是在推断总体参数时,还要根据统计量的抽样分布特征,估计出总体参数的一个区间,而不是一个数值并同时给出总体参数落在这一区间的可能性大小,概率的保证。还是举小学生身高的例子,如果用区间估计的方法推断小学生身高,则会给出以下的表达:根据样本数据,估计小学生的平均身高在1.4~1.5米之间,置信程度为95%,这种估计就属于区间估计。

你可能感兴趣的:(统计,统计学)