一、题目描述
你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。
假设你有 n 个版本 [1, 2, ..., n],你想找出导致之后所有版本出错的第一个错误的版本。
你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。
示例 1:
输入:n = 5, bad = 4
输出:4
解释:
调用 isBadVersion(3) -> false
调用 isBadVersion(5) -> true
调用 isBadVersion(4) -> true
所以,4 是第一个错误的版本。
示例 2:
输入:n = 1, bad = 1
输出:1
二、思路及算法
因为题目要求尽量减少调用检查接口的次数,所以不能对每个版本都调用检查接口,而是应该将调用检查接口的次数降到最低。
注意到一个性质:当一个版本为正确版本,则该版本之前的所有版本均为正确版本;当一个版本为错误版本,则该版本之后的所有版本均为错误版本。我们可以利用这个性质进行二分查找。
具体地,将左右边界分别初始化为 111 和 nnn,其中 nnn 是给定的版本数量。设定左右边界之后,每次我们都依据左右边界找到其中间的版本,检查其是否为正确版本。如果该版本为正确版本,那么第一个错误的版本必然位于该版本的右侧,我们缩紧左边界;否则第一个错误的版本必然位于该版本及该版本的左侧,我们缩紧右边界。
这样我们每判断一次都可以缩紧一次边界,而每次缩紧时两边界距离将变为原来的一半,因此我们至多只需要缩紧 O(logn)O(\log n)O(logn) 次。
三、代码
public class Solution extends VersionControl {
public int firstBadVersion(int n) {
int left = 1, right = n;
while (left < right) { // 循环直至区间左右端点相同
int mid = left + (right - left) / 2; // 防止计算时溢出
if (isBadVersion(mid)) {
right = mid; // 答案在区间 [left, mid] 中
} else {
left = mid + 1; // 答案在区间 [mid+1, right] 中
}
}
// 此时有 left == right,区间缩为一个点,即为答案
return left;
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/first-bad-version/solution/di-yi-ge-cuo-wu-de-ban-ben-by-leetcode-s-pf8h/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
四、复杂度分析
时间复杂度:O(logn),其中 n是给定版本的数量。
空间复杂度:O(1)。我们只需要常数的空间保存若干变量。
五、错误答案
public class Solution extends VersionControl {
public int firstBadVersion(int n) {
int low=1,high=n;
int min=n;
while(low<=high){
int mid=(low+high)/2; //注意这里,如果这样写会有溢出错误
boolean flag=isBadVersion(mid);
if(flag==true){
if(mid
报错:
原因:
如果 low 和 high 比较大的话,两者之和就有可能会溢出。
改进的方法是将 mid 的计算方式写成low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1)。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/first-bad-version
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。