import time
import cv2
import numpy as np
import torch
from numpy import random
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import non_max_suppression, scale_coords, xyxy2xywh
from utils.plots import plot_one_box
from utils.torch_utils import select_device
class YOLOv7Detector:
def __init__(self, weights='best.pt', conf_thres=0.3, iou_thres=0.45):
""" Initialization """
self.half = False
self.conf_thres = conf_thres
self.iou_thres = iou_thres
self.device = select_device('0')
self.model = attempt_load(weights, map_location=self.device) # load FP32 model
if self.half:
self.model.half() # to FP16
# stride = int(model.stride.max()) # model stride
# imgsz = check_img_size(imgsz, s=stride) # check img_size
# Get names and colors
self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
def image_preprocess(self, image):
im0 = image.copy()
img = letterbox(im0, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True,
stride=32)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(self.device)
img = img.half() if self.half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
return img, im0
def __call__(self, image, *args, **kwargs):
img, img0 = self.image_preprocess(image)
pred = self.model(img, augment=False)[0]
pred = non_max_suppression(pred, conf_thres=self.conf_thres, iou_thres=self.iou_thres, classes=None, agnostic=False)
for i, det in enumerate(pred): # detections per image
# gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# # Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
# xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
label = f'{self.names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, img0, label=label, color=self.colors[int(cls)], line_thickness=1)
return img0
if __name__ == '__main__':
yolov7_detector = YOLOv7Detector(weights='best.pt')
img = 'E:/yolov7_ui_qt/VOCdevkit/VOC2007/JPEGImages/000000016761.jpg'
while True:
im0 = cv2.imread(img)
t0 = time.time()
im = yolov7_detector(im0)
print(f'Done. ({time.time() - t0:.3f}s)')
cv2.imshow("123456", im)
cv2.waitKey(1) # 1 millisecond