模型原型
sklearn.svm.SVR(kernel=’rbf’,degree=3,gamma=’auto’,coef0=0.0,tol=0.001,C=1.0,epsilon=0.1,shrinking=True, cache_size=200,verbose=False,max_iter=-1)
参数
属性
方法
- fit(X,y)
- predict(X)
- score(X,y[,sample_weight])
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets,linear_model,cross_validation,svm
加载数据
def load_data_regression():
diabetes=datasets.load_diabetes()
return cross_validation.train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0)
不同的核的影响
#线性核
def test_SVR_linear(*data):
X_train,X_test,y_train,y_test=data
regr=svm.SVR(kernel='linear')
regr.fit(X_train,y_train)
print('Coefficients:%s,\nintercept %s'%(regr.coef_,regr.intercept_))
print('Score:%.2f'%regr.score(X_test,y_test))
X_train,X_test,y_train,y_test=load_data_regression()
test_SVR_linear(X_train,X_test,y_train,y_test)
#多项式核
def test_SVR_poly(*data):
X_train,X_test,y_train,y_test=data
fig=plt.figure()
#测试degree
degrees=range(1,20)
train_scores=[]
test_scores=[]
for degree in degrees:
regr=svm.SVR(kernel='poly',degree=degree,coef0=1)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test,y_test))
ax=fig.add_subplot(1,3,1)
ax.plot(degrees,train_scores,label="Training score",marker='x')
ax.plot(degrees,test_scores,label='Testing score',marker='o')
ax.set_title('SVR_poly_degree r=1')
ax.set_xlabel('p')
ax.set_ylabel('score')
ax.set_ylim(-1,1.)
ax.legend(loc='best',framealpha=0.5)
#测试gamma
gammas=range(1,40)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVR(kernel='poly',gamma=gamma,degree=3,coef0=1)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test,y_test))
ax=fig.add_subplot(1,3,2)
ax.plot(gammas,train_scores,label='Training score',marker='+')
ax.plot(gammas,test_scores,label='Testing score',marker='o')
ax.set_title('SVR_poly_gamma r=1')
ax.set_xlabel(r'$\gamma$')
ax.set_ylabel('score')
ax.set_ylim(-1,1)
ax.legend(loc='best',framealpha=0.5)
#测试r
rs=range(20)
train_scores=[]
test_scores=[]
for r in rs:
regr=svm.SVR(kernel='poly',gamma=10,degree=3,coef0=r)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test,y_test))
ax=fig.add_subplot(1,3,3)
ax.plot(rs,train_scores,label="Training score",marker='+')
ax.plot(rs,test_scores,label='Testing scores',marker='o')
ax.set_title('SVR_poly_r gamma=20 degree=3')
ax.set_xlabel(r'r')
ax.set_ylabel('score')
ax.set_ylim(-1,1.)
ax.legend(loc='best',framealpha=0.5)
plt.show()
test_SVR_poly(X_train,X_test,y_train,y_test)
#高斯核
def test_SVR_rbf(*data):
X_train,X_test,y_train,y_test=data
gammas=range(1,20)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVC(kernel='rbf',gamma=gamma)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test,y_test))
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(gammas,train_scores,label="Training score",marker='+')
ax.plot(gammas,test_scores,label='Testing score',marker='o')
ax.set_title('SVC_rbf')
ax.set_xlabel(r'$\gamma$')
ax.set_ylabel('score')
ax.set_ylim(-1,1.)
ax.legend(loc='best',framealpha=0.5)
plt.show()
test_SVR_rbf(X_train,X_test,y_train,y_test)
#sigmoid核
def test_SVR_sigmoid(*data):
X_train,X_test,y_train,y_test=data
fig=plt.figure()
#测试gamma
gammas=np.logspace(-1,3)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVR(kernel='sigmoid',gamma=gamma,coef0=0.01)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test,y_test))
ax=fig.add_subplot(1,2,1)
ax.plot(gammas,train_scores,label='Training score',marker='+')
ax.plot(gammas,test_scores,label="testing score",marker='o')
ax.set_title('SVR_sigmoid_gammas r=0.01')
ax.set_xscale('log')
ax.set_xlabel(r'$\gamma$')
ax.set_ylabel('score')
ax.set_ylim(-1,1.)
ax.legend(loc='best',framealpha=0.5)
#测试r
rs=np.linspace(0,5)
train_scores=[]
test_scores=[]
for r in rs:
regr=svm.SVR(kernel='sigmoid',coef0=r,gamma=10)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test,y_test))
ax=fig.add_subplot(1,2,2)
ax.plot(rs,train_scores,label="Training score",marker='+')
ax.plot(rs,test_scores,label='Testing score',marker='o')
ax.set_title('SVR_sigmoid_r gamma=10')
ax.set_xlabel(r'r')
ax.set_ylabel('score')
ax.set_ylim(-1,1.)
ax.legend(loc='best',framealpha=0.5)
plt.show()
test_SVR_sigmoid(X_train,X_test,y_train,y_test)