【Pytorch】损失函数与反向传播 - 学习笔记

视频地址

1 - L1Loss

官方文档地址
【Pytorch】损失函数与反向传播 - 学习笔记_第1张图片
代码实现

import torch
from torch.nn import L1Loss

inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))

loss = L1Loss()
# loss = L1Loss(reduction='sum') 这里输出为2
result = loss(inputs, targets)

print(result)

输出结果为

D:\Anaconda3\envs\pytorch\python.exe D:/研究生/代码尝试/nn_loss.py
tensor(0.6667)

进程已结束,退出代码为 0

2 - MSELoss 均方误差

import torch
from torch.nn import L1Loss, MSELoss
# from torch import nn   这样就可以避免忘记函数名称

inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))

loss_mse = MSELoss()
# result_mse = nn.MSELoss()   搭配使用,防止忘记函数名称
result_mse = loss_mse(inputs, targets)

print(result_mse)

输出结果为

D:\Anaconda3\envs\pytorch\python.exe D:/研究生/代码尝试/nn_loss.py
tensor(1.3333)

进程已结束,退出代码为 0

3 - CrossEntropyLoss 交叉熵

文档比较长,自行查阅
【Pytorch】损失函数与反向传播 - 学习笔记_第2张图片
这里是交叉熵+ softmax?
【Pytorch】损失函数与反向传播 - 学习笔记_第3张图片
代码!

import torch
from torch import nn
from torch.nn import L1Loss, MSELoss

x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3)) # batch_size , class
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(result_cross)

4 - 将损失函数和神经网络结合

import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

dataloader = DataLoader(dataset, batch_size=1)

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


loss = nn.CrossEntropyLoss()
model = Model()
for data in dataloader:
    imgs, targets = data
    outputs = model(imgs)
    result_loss = loss(outputs, targets)
    print(result_loss)
    # print(outputs)
    # print(targets)

输出结果为(取前几个例子)

tensor(2.2874, grad_fn=<NllLossBackward0>)
tensor(2.3025, grad_fn=<NllLossBackward0>)
tensor(2.3110, grad_fn=<NllLossBackward0>)
tensor(2.2716, grad_fn=<NllLossBackward0>)
tensor(2.2530, grad_fn=<NllLossBackward0>)
tensor(2.2430, grad_fn=<NllLossBackward0>)

5 - 使用反向传播

import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

dataloader = DataLoader(dataset, batch_size=1)

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


loss = nn.CrossEntropyLoss()
model = Model()
for data in dataloader:
    imgs, targets = data
    outputs = model(imgs)
    result_loss = loss(outputs, targets)
    result_loss.backward()
    print("OK")

我们使用断点看一下梯度数据
【Pytorch】损失函数与反向传播 - 学习笔记_第4张图片
在model->protected->modules->conv2d->weight里可以查看,最开始没有,但是单步运行一次后,就会有数据
【Pytorch】损失函数与反向传播 - 学习笔记_第5张图片
【Pytorch】损失函数与反向传播 - 学习笔记_第6张图片

你可能感兴趣的:(Pytorch,深度学习,Python,pytorch,深度学习,python)