python解决八数码问题_人工智能-爬山法解决八数码问题-python源码

问题描述:

在一个3*3的方棋盘上放置着1,2,3,4,5,6,7,8八个数码,每个数码占一格,且有一个空格。这些数码可以在棋盘上移动,其移动规则是:与空格相邻的数码方格可以移入空格。现在的问题是:对于指定的初始棋局和目标棋局,给出数码的移动序列。该问题称八数码难题或者重排九宫问题。

八数码问题的解决流程如下图所示:

算法源代码为:

import copy

import numpy as np

import random

import time

import math

# 爬山法解决八皇后问题

# 八数码初始化函数,返回一个初始状态和一个目标状态,这里0代表八数码中的空格

def init():

init_state = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])

target_state = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])

np.random.shuffle(init_state)

np.random.shuffle(target_state)

init_state = np.reshape(init_state, (3, 3))

target_state = np.reshape(target_state, (3, 3))

return init_state, target_state

# 计算当前状态和目标状态下的曼哈顿距离

def compute_manhattan_distance(init_state, target_state):

total_distance = 0

for i in range(1, 9):

(init_row, init_column) = np.where(init_state == i)

(target_row, target_column) = np.where(target_state == i)

total_distance += abs(target_row - init_row) + abs(target_column - init_column)

return int(total_distance)

# 计算接下来所有可能的行动带来的曼哈顿距离

def compute_manhattan_distance_all(init_state, target_state):

distances = {}

coord_cache = {}

# 获取空白方块的坐标

zero_row, zero_column = np.where(init_state == 0)

# 计算空白方块尝试往四个方向移动后产生状态的曼哈顿距离

if zero_row - 1 >= 0: # 如果空白方块在最上边则不能往上移,下面同理

up_row, up_column = zero_row - 1, zero_column

coord_cache["up"] = [up_row, up_column]

if zero_row + 1 <= 2:

down_row, down_column = zero_row + 1, zero_column

coord_cache["down"] = [down_row, down_column]

if zero_column - 1 >= 0:

left_row, left_column = zero_row, zero_column - 1

coord_cache["left"] = [left_row, left_column]

if zero_column + 1 <= 2:

right_row, right_column = zero_row, zero_column + 1

coord_cache["right"] = [right_row, right_column]

for i in coord_cache.keys(): # 移动到所有可以移动的方向,然后计算移动之后的曼哈顿距离以便接下来的贪心选择计算

temp = init_state.copy()

temp[zero_row, zero_column] = temp[coord_cache[i][0], coord_cache[i][1]]

temp[coord_cache[i][0], coord_cache[i][1]] = 0

distances[i] = compute_manhattan_distance(temp, target_state)

return distances

# 得到distances中曼哈顿距离最小的方向

def minimal_manhattan_distance(distances):

temp = copy.deepcopy(distances)

minimal_value = 1000

for i in temp.keys():

if distances[i] < minimal_value:

minimal_value = distances[i]

return minimal_value

# 根据得到的曼哈顿距离进行下一步移动

def next_move(init_state, distances):

current_state = init_state.copy()

zero_row, zero_column = np.where(current_state == 0)

# 获取移动的方向

minimal_value = 1000

key = ""

for i in distances.keys():

if distances[i] < minimal_value:

minimal_value = distances[i]

key = i

if key == "up": # 空格向上移动,下面同理

print("向上移动")

up_row, up_column = zero_row - 1, zero_column

temp = current_state[up_row, up_column]

current_state[zero_row, zero_column] = temp

current_state[up_row, up_column] = 0

if key == "down":

print("向下移动")

down_row, down_column = zero_row + 1, zero_column

temp = current_state[down_row, down_column]

current_state[zero_row, zero_column] = temp

current_state[down_row, down_column] = 0

if key == "left":

print("向左移动")

left_row, left_column = zero_row, zero_column - 1

temp = current_state[left_row, left_column]

current_state[zero_row, zero_column] = temp

current_state[left_row, left_column] = 0

if key == "right":

print("向右移动")

right_row, right_column = zero_row, zero_column + 1

temp = current_state[right_row, right_column]

current_state[zero_row, zero_column] = temp

current_state[right_row, right_column] = 0

return current_state

# 爬山算法

def climbing_algorithm():

init_state, target_state = init()

print("初始状态为:\n", init_state)

print("目标状态为:\n", target_state)

while True:

current_manhattan_distance = compute_manhattan_distance(init_state, target_state) # 计算当前状态与目标状态的曼哈顿距离

print("当前状态距离目标的曼哈顿距离为:", current_manhattan_distance)

if current_manhattan_distance == 0: # 当前状态就是目标状态,算法结束

return True

distances = compute_manhattan_distance_all(init_state, target_state) # 计算空白方块所有可以移动的方向和对应的曼哈顿值

print("distances:", distances)

print("distances里面的最小值为:", minimal_manhattan_distance(distances))

if current_manhattan_distance <= minimal_manhattan_distance(distances):

return False # 即接下来无论如何移动的曼哈顿距离都大于目前的,则陷入了局部最优解

init_state = next_move(init_state, distances)

print("移动后的新状态为:\n", init_state)

def climbing_algorithm_test(num):

tic = time.time()

success_case = 0

fail_case = 0

for i in range(num):

print("第{0}个例子启动".format(i))

if climbing_algorithm():

success_case += 1

print("第{0}个例子成功找到最优解".format(i))

else:

fail_case += 1

print("第{0}个例子失败".format(i))

toc = time.time()

print("{0}个例子中成功解决的例子为:{1}".format(num, success_case))

print("{0}个例子成功解决的百分比为:{1}".format(num, success_case / num))

print("{0}个例子中失败的例子为:{1}".format(num, fail_case))

print("{0}个例子失败的百分比为:{1}".format(num, fail_case / num))

print("{0}运行算法所需的时间为:{1}秒".format(num, toc - tic))

climbing_algorithm_test(10000)

测试结果为:

你可能感兴趣的:(python解决八数码问题)