参考: https://blog.csdn.net/weixin_39589455/article/details/114950664
https
参考: https://zhuanlan.zhihu.com/p/82495268
https://blog.csdn.net/zrh_CSDN/article/details/81267873
https://blog.csdn.net/weixin_39589455/article/details/114950664
LeNet又被称为LeNet-5,其之所以称为这个名称是由于原始的LeNet是一个5层的卷积神经网络,它主要包括两部分:
卷积层 2
全连接层 3
LeNet 各层参数详解:
INPUT层 – 输入层
输入层通常不被视为网络层次结构
输入图像尺寸统一进行预处理为 32*32
第一层卷积使用CBAPD描述
C(6个55的卷积核, 步长1 填充:valid)
B: None LetNet提出时还没有BN操作
A:激活函数 sigmoid
P: 池化核 22 步长2 max:最大池化 填充: valid
D: None LetNet提出时还没有Dropout操作
第二层卷积 使用CBAPD描述
C(16个55的卷积核, 步长1 填充:valid)
B: None LetNet提出时还没有BN操作
A:激活函数 sigmoid
P: 池化核 22 步长2 max:最大池化 填充: valid
D: None LetNet提出时还没有Dropout操作
Flatten层 拉直层
3个全连接层
Dense(神经元个数: 120 激活函数: sigmoid)
Dense(神经元个数: 84 激活函数: sigmoid)
Dense(神经元个数: 10 激活函数: softmax) # 使输出符合概率分布
小知识点: Input层到C1层叫卷积 经过卷积核降参数
C1层到S2层叫池化,一般使用最大值max(池化矩阵中取最大值)或者平均值mean(池化矩阵中取平均值)
池化和卷积参考: https://blog.csdn.net/weixin_41417982/article/details/81412076
LeNet版cifar10代码如下:
# -*- coding: utf-8 -*-
import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.python.keras.datasets.cifar import load_batch
def load_cifar10_data():
# 获取数据 直接使用 tf.keras.datasets.cifar10.load_data() 会报错
# cifar10数据下载 参考 https://zhuanlan.zhihu.com/p/129078357
# path 为解压后的路径
path = 'D:\\Repository\\ai_data\\DeepLearing_TensorFlow2.0-book\\cifar10\\cifar-10-batches-py\\'
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
fpath = os.path.join(path, 'test_batch')
x_test, y_test = load_batch(fpath)
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
if tf.keras.backend.image_data_format() == 'channels_last':
x_train = x_train.transpose(0, 2, 3, 1)
x_test = x_test.transpose(0, 2, 3, 1)
x_test = x_test.astype(x_train.dtype)
y_test = y_test.astype(y_train.dtype)
x_train, x_test = x_train / 255.0, x_test / 255.0 # 数据归一化
return (x_train, y_train), (x_test, y_test)
class LeNetModel(tf.keras.Model):
def __init__(self):
super(LeNetModel, self).__init__()
# 第一层
self.c1 = tf.keras.layers.Conv2D(filters=6, kernel_size=(5, 5),
activation='sigmoid')
self.p1 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2)
# 第二层
self.c2 = tf.keras.layers.Conv2D(filters=16, kernel_size=(5, 5),
activation='sigmoid')
self.p2 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2)
# 拉直层
self.flatten = tf.keras.layers.Flatten()
# 三层全连接层
self.f1 = tf.keras.layers.Dense(120, activation='sigmoid')
self.f2 = tf.keras.layers.Dense(84, activation='sigmoid')
self.f3 = tf.keras.layers.Dense(10, activation='softmax')
def call(self, x):
x = self.c1(x)
x = self.p1(x)
x = self.c2(x)
x = self.p2(x)
x = self.flatten(x)
x = self.f1(x)
x = self.f2(x)
y = self.f3(x)
return y
def load_local_model(model_path):
if os.path.exists(model_path + '/saved_model.pb'):
tf.print('-------------load the model-----------------')
local_model = tf.keras.models.load_model(model_path)
else:
local_model = LetNetModel()
local_model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
return local_model
if __name__ == '__main__':
(x_train, y_train), (x_test, y_test) = load_cifar10_data()
model_path = "./data/model/cifar/letnet"
model = load_local_model(model_path)
# 机器垃圾 跑不快 运行3次
history = model.fit(x_train, y_train, batch_size=32, epochs=3, validation_data=(x_test, y_test),
validation_freq=1)
model.summary()
# 保存模型
model.save(model_path, save_format="tf")
参考: https://zhuanlan.zhihu.com/p/42914388
2012年出现,AlexNet使用relu激活函数,提省了训练速度,使用Dropout缓解了过拟合。
AlexNet共有8层, 5层卷积,3层全连接层。
AlexNet 各层参数详解:
AlexNet 运行需要大量资源 cpu电脑就不要尝试了
AlexNet版cifar10代码如下:
# -*- coding: utf-8 -*-
import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.python.keras.datasets.cifar import load_batch
def load_cifar10_data():
# 获取数据 直接使用 tf.keras.datasets.cifar10.load_data() 会报错
# cifar10数据下载 参考 https://zhuanlan.zhihu.com/p/129078357
# path 为解压后的路径
path = 'D:\\Repository\\ai_data\\DeepLearing_TensorFlow2.0-book\\cifar10\\cifar-10-batches-py\\'
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
fpath = os.path.join(path, 'test_batch')
x_test, y_test = load_batch(fpath)
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
if tf.keras.backend.image_data_format() == 'channels_last':
x_train = x_train.transpose(0, 2, 3, 1)
x_test = x_test.transpose(0, 2, 3, 1)
x_test = x_test.astype(x_train.dtype)
y_test = y_test.astype(y_train.dtype)
x_train, x_test = x_train / 255.0, x_test / 255.0 # 数据归一化
return (x_train, y_train), (x_test, y_test)
class AlexNetModel(tf.keras.Model):
def __init__(self):
super(AlexNetModel, self).__init__()
self.c1 = tf.keras.layers.Conv2D(filters=96, kernel_size=(3, 3))
self.b1 = tf.keras.layers.BatchNormalization()
self.a1 = tf.keras.layers.Activation('relu')
self.p1 = tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=2)
self.c2 = tf.keras.layers.Conv2D(filters=256, kernel_size=(3, 3))
self.b2 = tf.keras.layers.BatchNormalization()
self.a2 = tf.keras.layers.Activation('relu')
self.p2 = tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=2)
self.c3 = tf.keras.layers.Conv2D(filters=384, kernel_size=(3, 3), padding='same',
activation='relu')
self.c4 = tf.keras.layers.Conv2D(filters=384, kernel_size=(3, 3), padding='same',
activation='relu')
self.c5 = tf.keras.layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same',
activation='relu')
self.p3 = tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=2)
self.flatten = tf.keras.layers.Flatten()
self.f1 = tf.keras.layers.Dense(2048, activation='relu')
self.d1 = tf.keras.layers.Dropout(0.5)
self.f2 = tf.keras.layers.Dense(2048, activation='relu')
self.d2 = tf.keras.layers.Dropout(0.5)
self.f3 = tf.keras.layers.Dense(10, activation='softmax')
def call(self, x):
x = self.c1(x)
x = self.b1(x)
x = self.a1(x)
x = self.p1(x)
x = self.c2(x)
x = self.b2(x)
x = self.a2(x)
x = self.p2(x)
x = self.c3(x)
x = self.c4(x)
x = self.c5(x)
x = self.p3(x)
x = self.flatten(x)
x = self.f1(x)
x = self.d1(x)
x = self.f2(x)
x = self.d2(x)
y = self.f3(x)
return y
def load_local_model(model_path):
if os.path.exists(model_path + '/saved_model.pb'):
tf.print('-------------load the model-----------------')
local_model = tf.keras.models.load_model(model_path)
else:
local_model = AlexNetModel()
local_model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
return local_model
if __name__ == '__main__':
(x_train, y_train), (x_test, y_test) = load_cifar10_data()
model_path = "./data/model/cifar/alexnet"
model = load_local_model(model_path)
# 机器垃圾 跑不快 运行1次 cpu电脑一次也别跑了
history = model.fit(x_train, y_train, batch_size=32, epochs=3, validation_data=(x_test, y_test),
validation_freq=1)
model.summary()
# 保存模型
model.save(model_path, save_format="tf")
诞生于2014年,VGGNet使用小尺寸卷积核,在减少参数的同时,提高了识别准确率。 VGGNet的网络结构规整,非常适合硬件加速(也就是说VGGNet更耗资源,cpu机器带不动了)
以VGGNet16为例
还是卷积层+ 全连接层
VGGNet版cifar10代码如下:
# -*- coding: utf-8 -*-
import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.python.keras.datasets.cifar import load_batch
def load_cifar10_data():
# 获取数据 直接使用 tf.keras.datasets.cifar10.load_data() 会报错
# cifar10数据下载 参考 https://zhuanlan.zhihu.com/p/129078357
# path 为解压后的路径
path = 'D:\\Repository\\ai_data\\DeepLearing_TensorFlow2.0-book\\cifar10\\cifar-10-batches-py\\'
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
fpath = os.path.join(path, 'test_batch')
x_test, y_test = load_batch(fpath)
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
if tf.keras.backend.image_data_format() == 'channels_last':
x_train = x_train.transpose(0, 2, 3, 1)
x_test = x_test.transpose(0, 2, 3, 1)
x_test = x_test.astype(x_train.dtype)
y_test = y_test.astype(y_train.dtype)
x_train, x_test = x_train / 255.0, x_test / 255.0 # 数据归一化
return (x_train, y_train), (x_test, y_test)
class VGGNetModel(tf.keras.Model):
def __init__(self):
super(VGGNetModel, self).__init__()
# vgg是两次CBA CBAPD
# 第一层 CBA
self.c1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same') # 卷积层1
self.b1 = tf.keras.layers.BatchNormalization() # BN层1
self.a1 = tf.keras.layers.Activation('relu') # 激活层1
# 第二层 CBAPD
self.c2 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', )
self.b2 = tf.keras.layers.BatchNormalization() # BN层1
self.a2 = tf.keras.layers.Activation('relu') # 激活层1
self.p2 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d2 = tf.keras.layers.Dropout(0.2) # dropout层
# 第三层 CBA
self.c3 = tf.keras.layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same')
self.b3 = tf.keras.layers.BatchNormalization() # BN层1
self.a3 = tf.keras.layers.Activation('relu') # 激活层1
# 第四层 CBAPD
self.c4 = tf.keras.layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same')
self.b4 = tf.keras.layers.BatchNormalization() # BN层1
self.a4 = tf.keras.layers.Activation('relu') # 激活层1
self.p4 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d4 = tf.keras.layers.Dropout(0.2) # dropout层
# 随后三次 CBA CBA CBAPD
# 第五层 CBA
self.c5 = tf.keras.layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same')
self.b5 = tf.keras.layers.BatchNormalization() # BN层1
self.a5 = tf.keras.layers.Activation('relu') # 激活层1
# 第6层 CBA
self.c6 = tf.keras.layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same')
self.b6 = tf.keras.layers.BatchNormalization() # BN层1
self.a6 = tf.keras.layers.Activation('relu') # 激活层1
# 第7层 CBAPD
self.c7 = tf.keras.layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same')
self.b7 = tf.keras.layers.BatchNormalization()
self.a7 = tf.keras.layers.Activation('relu')
self.p7 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d7 = tf.keras.layers.Dropout(0.2)
# 第8层 CBA
self.c8 = tf.keras.layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b8 = tf.keras.layers.BatchNormalization() # BN层1
self.a8 = tf.keras.layers.Activation('relu') # 激活层1
# 第9层 CBA
self.c9 = tf.keras.layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b9 = tf.keras.layers.BatchNormalization() # BN层1
self.a9 = tf.keras.layers.Activation('relu') # 激活层1
# 第10层 CBAPD
self.c10 = tf.keras.layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b10 = tf.keras.layers.BatchNormalization()
self.a10 = tf.keras.layers.Activation('relu')
self.p10 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d10 = tf.keras.layers.Dropout(0.2)
# 第11层 CBA
self.c11 = tf.keras.layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b11 = tf.keras.layers.BatchNormalization() # BN层1
self.a11 = tf.keras.layers.Activation('relu') # 激活层1
# 第12层 CBA
self.c12 = tf.keras.layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b12 = tf.keras.layers.BatchNormalization() # BN层1
self.a12 = tf.keras.layers.Activation('relu') # 激活层1
# 第13层 CBAPD
self.c13 = tf.keras.layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same')
self.b13 = tf.keras.layers.BatchNormalization()
self.a13 = tf.keras.layers.Activation('relu')
self.p13 = tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
self.d13 = tf.keras.layers.Dropout(0.2)
# 拉直层
self.flatten = tf.keras.layers.Flatten()
# 第14层 全连接层
self.f14 = tf.keras.layers.Dense(512, activation='relu')
self.d14 = tf.keras.layers.Dropout(0.2)
# 第15层 全连接层
self.f15 = tf.keras.layers.Dense(512, activation='relu')
self.d15 = tf.keras.layers.Dropout(0.2)
# 第16层 全连接层
self.f16 = tf.keras.layers.Dense(10, activation='softmax')
def call(self, x):
x = self.c1(x)
x = self.b1(x)
x = self.a1(x)
x = self.c2(x)
x = self.b2(x)
x = self.a2(x)
x = self.p2(x)
x = self.d2(x)
x = self.c3(x)
x = self.b3(x)
x = self.a3(x)
x = self.c4(x)
x = self.b4(x)
x = self.a4(x)
x = self.p4(x)
x = self.d4(x)
x = self.c5(x)
x = self.b5(x)
x = self.a5(x)
x = self.c6(x)
x = self.b6(x)
x = self.a6(x)
x = self.c7(x)
x = self.b7(x)
x = self.a7(x)
x = self.p7(x)
x = self.d7(x)
x = self.c8(x)
x = self.b8(x)
x = self.a8(x)
x = self.c9(x)
x = self.b9(x)
x = self.a9(x)
x = self.c10(x)
x = self.b10(x)
x = self.a10(x)
x = self.p10(x)
x = self.d10(x)
x = self.c11(x)
x = self.b11(x)
x = self.a11(x)
x = self.c12(x)
x = self.b12(x)
x = self.a12(x)
x = self.c13(x)
x = self.b13(x)
x = self.a13(x)
x = self.p13(x)
x = self.d13(x)
x = self.flatten(x)
x = self.f14(x)
x = self.d14(x)
x = self.f15(x)
x = self.d15(x)
y = self.f16(x)
return y
def load_local_model(model_path):
if os.path.exists(model_path + '/saved_model.pb'):
tf.print('-------------load the model-----------------')
local_model = tf.keras.models.load_model(model_path)
else:
local_model = VGGNetModel()
local_model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
return local_model
if __name__ == '__main__':
(x_train, y_train), (x_test, y_test) = load_cifar10_data()
model_path = "./data/model/cifar/vgg"
model = load_local_model(model_path)
# 机器垃圾 跑不快 运行1次
history = model.fit(x_train, y_train, batch_size=32, epochs=1, validation_data=(x_test, y_test),
validation_freq=1)
model.summary()
# 保存模型
model.save(model_path, save_format="tf")
InceptionNet诞生于2014年,它引入了Inception结构块
在同一层网络内使用不同尺寸的卷积核,提升了感知力,使用了批标准化,缓解了梯度消失。(GoogleNet即inception-V1)
InceptionNet核心是它的基本单元Inception机构块
Inception机构块
InceptionNet在同一层网络内使用不同尺寸的卷积核,可以提取不同尺寸的特征,
通过11卷积核 作用到每个输入特征图的每个像素点,通过设定少于输入特征深度的11卷积核个数,减少了输出特征图深度,起到了降维的作用,减少了参数量和计算量
Inception结构块包含4个分支
# -*- coding: utf-8 -*-
import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.python.keras.datasets.cifar import load_batch
def load_cifar10_data():
# 获取数据 直接使用 tf.keras.datasets.cifar10.load_data() 会报错
# cifar10数据下载 参考 https://zhuanlan.zhihu.com/p/129078357
# path 为解压后的路径
path = 'D:\\Repository\\ai_data\\DeepLearing_TensorFlow2.0-book\\cifar10\\cifar-10-batches-py\\'
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
fpath = os.path.join(path, 'test_batch')
x_test, y_test = load_batch(fpath)
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
if tf.keras.backend.image_data_format() == 'channels_last':
x_train = x_train.transpose(0, 2, 3, 1)
x_test = x_test.transpose(0, 2, 3, 1)
x_test = x_test.astype(x_train.dtype)
y_test = y_test.astype(y_train.dtype)
x_train, x_test = x_train / 255.0, x_test / 255.0 # 数据归一化
return (x_train, y_train), (x_test, y_test)
class ConvBNRelu(tf.keras.Model):
'''
Inception结构块中的4个分支都包含相同结构(CBA结构)
可以写成一个类 从而减少代码长度
'''
#
def __init__(self, filters, kernel_size=3, strides=1, padding='same'):
super(ConvBNRelu, self).__init__()
self.model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation('relu')
])
def call(self, x):
# 在training=False时,BN通过整个训练集计算均值、方差去做批归一化,training=True时,通过当前batch的均值、方差去做批归一化。推理时 training=False效果好
x = self.model(x, training=False)
return x
class InceptionStruct(tf.keras.Model):
'''
Inception结构块
filters, kernel_size=3, strides=1, padding='same'
'''
def __init__(self, filters, strides=1):
super(InceptionStruct, self).__init__()
self.filters = filters
self.strides = strides
self.c1 = ConvBNRelu(filters, kernel_size=1, strides=strides)
self.c2_1 = ConvBNRelu(filters, kernel_size=1, strides=strides)
self.c2_2 = ConvBNRelu(filters, kernel_size=3, strides=1)
self.c3_1 = ConvBNRelu(filters, kernel_size=1, strides=strides)
self.c3_2 = ConvBNRelu(filters, kernel_size=5, strides=1)
self.p4_1 = tf.keras.layers.MaxPool2D(3, strides=1, padding='same')
self.c4_2 = ConvBNRelu(filters, kernel_size=1, strides=strides)
def call(self, x):
x1 = self.c1(x)
x2_1 = self.c2_1(x)
x2_2 = self.c2_2(x2_1)
x3_1 = self.c3_1(x)
x3_2 = self.c3_2(x3_1)
x4_1 = self.p4_1(x)
x4_2 = self.c4_2(x4_1)
# 使用concat函数将他们堆叠在一起
x = tf.concat([x1, x2_2, x3_2, x4_2], axis=3)
return x
class InceptionModel(tf.keras.Model):
def __init__(self, num_blocks, num_classes, init_ch=16, **kwargs):
super(InceptionModel, self).__init__(**kwargs)
self.in_channels = init_ch
self.out_channels = init_ch
self.num_blocks = num_blocks
self.init_ch = init_ch
self.c1 = ConvBNRelu(init_ch)
self.blocks = tf.keras.models.Sequential()
for block_id in range(num_blocks):
for layer_id in range(2):
if layer_id == 0:
block = InceptionStruct(self.out_channels, strides=2)
else:
block = InceptionStruct(self.out_channels, strides=1)
self.blocks.add(block)
# enlarger out_channels per block
self.out_channels *= 2
self.p1 = tf.keras.layers.GlobalAveragePooling2D()
self.f1 = tf.keras.layers.Dense(num_classes, activation='softmax')
def call(self, x):
x = self.c1(x)
x = self.blocks(x)
x = self.p1(x)
y = self.f1(x)
return y
def load_local_model(model_path):
if os.path.exists(model_path + '/saved_model.pb'):
tf.print('-------------load the model-----------------')
local_model = tf.keras.models.load_model(model_path)
else:
local_model = InceptionModel(num_blocks=2, num_classes=10)
local_model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
return local_model
if __name__ == '__main__':
(x_train, y_train), (x_test, y_test) = load_cifar10_data()
# 数据量太大跑不动 仅用作测试
(x_train, y_train), (x_test, y_test) = (x_train[0:256], y_train[0:256]), (x_test[0:256], y_test[0:256])
model_path = "./data/model/cifar/inception"
model = load_local_model(model_path)
history = model.fit(x_train, y_train, batch_size=32, epochs=6, validation_data=(x_test, y_test),
validation_freq=1)
model.summary()
# 保存模型
model.save(model_path, save_format="tf")
ResNet诞生于2015年,ResNet提出了层间残差跳连,引入了前方信息,缓解梯度消失, 使神经网络层数增加成为可能。
ResNet块有两种形式
一种在堆叠卷积前后维度不同
一种在堆叠卷积前后维度相同
ResNet版cifar10代码
# -*- coding: utf-8 -*-
import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.python.keras.datasets.cifar import load_batch
def load_cifar10_data():
# 获取数据 直接使用 tf.keras.datasets.cifar10.load_data() 会报错
# cifar10数据下载 参考 https://zhuanlan.zhihu.com/p/129078357
# path 为解压后的路径
path = 'D:\\Repository\\ai_data\\DeepLearing_TensorFlow2.0-book\\cifar10\\cifar-10-batches-py\\'
num_train_samples = 50000
x_train = np.empty((num_train_samples, 3, 32, 32), dtype='uint8')
y_train = np.empty((num_train_samples,), dtype='uint8')
for i in range(1, 6):
fpath = os.path.join(path, 'data_batch_' + str(i))
(x_train[(i - 1) * 10000:i * 10000, :, :, :],
y_train[(i - 1) * 10000:i * 10000]) = load_batch(fpath)
fpath = os.path.join(path, 'test_batch')
x_test, y_test = load_batch(fpath)
y_train = np.reshape(y_train, (len(y_train), 1))
y_test = np.reshape(y_test, (len(y_test), 1))
if tf.keras.backend.image_data_format() == 'channels_last':
x_train = x_train.transpose(0, 2, 3, 1)
x_test = x_test.transpose(0, 2, 3, 1)
x_test = x_test.astype(x_train.dtype)
y_test = y_test.astype(y_train.dtype)
x_train, x_test = x_train / 255.0, x_test / 255.0 # 数据归一化
return (x_train, y_train), (x_test, y_test)
class ResStruct(tf.keras.Model):
'''
Res结构块
filters, kernel_size=3, strides=1, residual_path
'''
def __init__(self, filters, strides=1, residual_path=False):
super(ResStruct, self).__init__()
self.filters = filters
self.strides = strides
self.residual_path = residual_path
self.c1 = tf.keras.layers.Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False)
self.b1 = tf.keras.layers.BatchNormalization()
self.a1 = tf.keras.layers.Activation('relu')
self.c2 = tf.keras.layers.Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False)
self.b2 = tf.keras.layers.BatchNormalization()
# residual_path为True时,对输入进行下采样,即用1x1的卷积核做卷积操作,保证x能和F(x)维度相同,顺利相加
if residual_path:
self.down_c1 = tf.keras.layers.Conv2D(filters, (1, 1), strides=strides, padding='same', use_bias=False)
self.down_b1 = tf.keras.layers.BatchNormalization()
self.a2 = tf.keras.layers.Activation('relu')
def call(self, inputs):
residual = inputs # residual等于输入值本身,即residual=x
# 将输入通过卷积、BN层、激活层,计算F(x)
x = self.c1(inputs)
x = self.b1(x)
x = self.a1(x)
x = self.c2(x)
y = self.b2(x)
if self.residual_path:
residual = self.down_c1(inputs)
residual = self.down_b1(residual)
out = self.a2(y + residual) # 最后输出的是两部分的和,即F(x)+x或F(x)+Wx,再过激活函数
return out
class ResNetModel(tf.keras.Model):
def __init__(self, block_list, initial_filters=64): # block_list表示每个block有几个卷积层
super(ResNetModel, self).__init__()
self.num_blocks = len(block_list) # 共有几个block
self.block_list = block_list
self.out_filters = initial_filters
self.c1 = tf.keras.layers.Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False)
self.b1 = tf.keras.layers.BatchNormalization()
self.a1 = tf.keras.layers.Activation('relu')
self.blocks = tf.keras.models.Sequential()
# 构建ResNet网络结构
for block_id in range(len(block_list)): # 第几个resnet block
for layer_id in range(block_list[block_id]): # 第几个卷积层
if block_id != 0 and layer_id == 0: # 对除第一个block以外的每个block的输入进行下采样
block = ResStruct(self.out_filters, strides=2, residual_path=True)
else:
block = ResStruct(self.out_filters, residual_path=False)
self.blocks.add(block) # 将构建好的block加入resnet
self.out_filters *= 2 # 下一个block的卷积核数是上一个block的2倍
self.p1 = tf.keras.layers.GlobalAveragePooling2D()
self.f1 = tf.keras.layers.Dense(10, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
def call(self, inputs):
x = self.c1(inputs)
x = self.b1(x)
x = self.a1(x)
x = self.blocks(x)
x = self.p1(x)
y = self.f1(x)
return y
def load_local_model(model_path):
if os.path.exists(model_path + '/saved_model.pb'):
tf.print('-------------load the model-----------------')
local_model = tf.keras.models.load_model(model_path)
else:
local_model = ResNetModel([2, 2, 2, 2])
local_model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
return local_model
if __name__ == '__main__':
(x_train, y_train), (x_test, y_test) = load_cifar10_data()
(x_train, y_train), (x_test, y_test) = (x_train[0:256], y_train[0:256]), (x_test[0:256], y_test[0:256])
model_path = "./data/model/cifar/resnet"
model = load_local_model(model_path)
# 机器垃圾 跑不快 运行3次
history = model.fit(x_train, y_train, batch_size=64, epochs=3, validation_data=(x_test, y_test),
validation_freq=1)
model.summary()
# 保存模型
model.save(model_path, save_format="tf")