https://github.com/kennymckormick/pyskl 包含多种动作分类的模型,感谢大佬
训练过程主要参考项目中的
examples/extract_diving48_skeleton/diving48_example.ipynb
但是我一开始不知道这个文件,从网上查不到太多的资料,走了不少弯路,这里就把我训练的过程分享一下。
这里使用的是Weizmann数据集,一个有10个分类,每个类别差不多有10个视频。
分成训练集和测试集,目录如下,最好让视频名称按照 ‘视频名_类别.mp4’这样的方式(主要是让视频名称里面含有类别的字段、或者类别的序号,后续好处理)
我的视频名称是这样的,daria_0.avi,我改了原始的视频名称
类别标签按照下面的方式定义,类别序号从0开始,且必须是连续的,要不然后面训练时会报错。
{'bend': '1', 'jack': '2', 'jump': '3', 'pjump': '4','run':'5','side':'6','skip':'7','walk':'8','wave1':'9','wave2':'0'}
也可以不这样生成,但是json里的内容后续要用
def writeJson(path_train,jsonpath):
outpot_list=[]
trainfile_list = os.listdir(path_train)
for train_name in trainfile_list:
traindit = {}
sp = train_name.split('_')
traindit['vid_name'] = train_name.replace('.avi', '')
traindit['label'] = int(sp[1].replace('.avi', ''))
traindit['start_frame'] = 0
video_path=os.path.join(path_train,train_name)
vid = decord.VideoReader(video_path)
traindit['end_frame'] = len(vid)
outpot_list.append(traindit.copy())
with open(jsonpath, 'w') as outfile:
json.dump(outpot_list, outfile)
生成的json内容如下,这里的vid_name为视频名称去掉了文件扩展名,label为定义的类别序号,
start_frame为0,end_frame为视频的总帧数。
[
{
"vid_name": "lyova_3",
"label": 3,
"start_frame": 0,
"end_frame": 40
},
]
这个Weizmann.list文件,里面包含训练集和测集视频,样式如下
视频路径 + 一个空格 + 类别序号
../data/Weizmann/train/lyova_3.avi 3 ../data/Weizmann/train/ira_1.avi 1
生成Weizmann.list文件的代码如下
def writeList(dirpath,name):
path_train = os.path.join(dirpath, 'train')
path_test = os.path.join(dirpath, 'test')
trainfile_list=os.listdir(path_train)
testfile_list=os.listdir(path_test)
train=[]
for train_name in trainfile_list:
traindit={}
sp=train_name.split('_')
traindit['vid_name']= train_name
traindit['label'] = sp[1].replace('.avi','')
train.append(traindit)
test = []
for test_name in testfile_list:
testdit={}
sp=test_name.split('_')
testdit['vid_name']= test_name
testdit['label'] = sp[1].replace('.avi','')
test.append(testdit)
tmpl1 =os.path.join(path_train,'{}')
lines1 = [(tmpl1 + ' {}').format(x['vid_name'], x['label']) for x in train]
tmpl2 = os.path.join(path_test, '{}')
lines2 = [(tmpl2 + ' {}').format(x['vid_name'], x['label']) for x in test]
lines=lines1+lines2
mwlines(lines, os.path.join(dirpath,name))
函数传入的参数,
path是数据集路径 dirpath = '../data/Weizmann'
name为生成的list文件名称,这里为 'Weizmann'
然后,调用custom_2d_skeleton.py,我参考另一个博主的文章
基于pyskl的poseC3D训练自己的数据集_骑走的小木马的博客-CSDN博客
修改了custom_2d_skeleton.py的代码,
我使用的是模型如下图,是目标检测模型和关节点检测模型,这两部分可以从mmpose和mmdetection找,然后自己替换。
还有一个插曲,不知道为什么下面这个文件就算下载下来,也不能用,会报错,最后改成了从网上下载。
faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
{文件下载下来,在运行的时候可能会报找不到checkpoint的错误,那就两种方式都试试,第一种就是下载到本地,default改成本地地址,第二种就是直接从网络加载,default改成链接}
parser.add_argument(
'--det-config',
default='../refe/faster_rcnn_r50_fpn_2x_coco.py',
help='human detection config file path (from mmdet)')
parser.add_argument(
'--det-ckpt',
default=('http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/'
'faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_'
'bbox_mAP-0.384_20200504_210434-a5d8aa15.pth'),
help='human detection checkpoint file/url')
parser.add_argument('--pose-config', type=str, default='../refe/hrnet_w32_coco_256x192.py')
parser.add_argument('--pose-ckpt', type=str, default='../refe/hrnet_w32_coco_256x192-c78dce93_20200708.pth')
# * Only det boxes with score larger than det_score_thr will be kept
parser.add_argument('--det-score-thr', type=float, default=0.7)
# * Only det boxes with large enough sizes will be kept,
parser.add_argument('--det-area-thr', type=float, default=1300)
里面原本有的文件需要通过网络下载,我提前将那些文件下载下来,放在了refe文件夹下面,如下图
在custom_2d_skeleton.py中,我发现下面这样写,一运行程序就卡,找不到原因,我花了好长时间改这个地方
import mmdet
from mmdet.apis import inference_detector, init_detector
下面是我修改后custom_2d_skeleton.py,
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
# import pdb
from mmdet.apis import inference_detector, init_detector
from mmpose.apis import inference_top_down_pose_model, init_pose_model
import decord
import mmcv
import numpy as np
# import torch.distributed as dist
from tqdm import tqdm
# import mmdet
# import mmpose
# from pyskl.smp import mrlines
import cv2
from pyskl.smp import mrlines
def extract_frame(video_path):
vid = decord.VideoReader(video_path)
return [x.asnumpy() for x in vid]
def detection_inference(model, frames):
model=model.cuda()
results = []
for frame in frames:
result = inference_detector(model, frame)
results.append(result)
return results
def pose_inference(model, frames, det_results):
model=model.cuda()
assert len(frames) == len(det_results)
total_frames = len(frames)
num_person = max([len(x) for x in det_results])
kp = np.zeros((num_person, total_frames, 17, 3), dtype=np.float32)
for i, (f, d) in enumerate(zip(frames, det_results)):
# Align input format
d = [dict(bbox=x) for x in list(d)]
pose = inference_top_down_pose_model(model, f, d, format='xyxy')[0]
for j, item in enumerate(pose):
kp[j, i] = item['keypoints']
return kp
def parse_args():
parser = argparse.ArgumentParser(
description='Generate 2D pose annotations for a custom video dataset')
# * Both mmdet and mmpose should be installed from source
# parser.add_argument('--mmdet-root', type=str, default=default_mmdet_root)
# parser.add_argument('--mmpose-root', type=str, default=default_mmpose_root)
# parser.add_argument('--det-config', type=str, default='../refe/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py')
# parser.add_argument('--det-ckpt', type=str,
# default='../refe/faster_rcnn_r50_fpn_1x_coco-person_20201216_175929-d022e227.pth')
parser.add_argument(
'--det-config',
default='../refe/faster_rcnn_r50_fpn_2x_coco.py',
help='human detection config file path (from mmdet)')
parser.add_argument(
'--det-ckpt',
default=('http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/'
'faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_'
'bbox_mAP-0.384_20200504_210434-a5d8aa15.pth'),
help='human detection checkpoint file/url')
parser.add_argument('--pose-config', type=str, default='../refe/hrnet_w32_coco_256x192.py')
parser.add_argument('--pose-ckpt', type=str, default='../refe/hrnet_w32_coco_256x192-c78dce93_20200708.pth')
# * Only det boxes with score larger than det_score_thr will be kept
parser.add_argument('--det-score-thr', type=float, default=0.7)
# * Only det boxes with large enough sizes will be kept,
parser.add_argument('--det-area-thr', type=float, default=1300)
# * Accepted formats for each line in video_list are:
# * 1. "xxx.mp4" ('label' is missing, the dataset can be used for inference, but not training)
# * 2. "xxx.mp4 label" ('label' is an integer (category index),
# * the result can be used for both training & testing)
# * All lines should take the same format.
parser.add_argument('--video-list', type=str, help='the list of source videos')
# * out should ends with '.pkl'
parser.add_argument('--out', type=str, help='output pickle name')
parser.add_argument('--tmpdir', type=str, default='tmp')
parser.add_argument('--local_rank', type=int, default=1)
# pdb.set_trace()
# if 'RANK' not in os.environ:
# os.environ['RANK'] = str(args.local_rank)
# os.environ['WORLD_SIZE'] = str(1)
# os.environ['MASTER_ADDR'] = 'localhost'
# os.environ['MASTER_PORT'] = '12345'
args = parser.parse_args()
return args
def main():
args = parse_args()
assert args.out.endswith('.pkl')
lines = mrlines(args.video_list)
lines = [x.split() for x in lines]
assert len(lines[0]) in [1, 2]
if len(lines[0]) == 1:
annos = [dict(frame_dir=osp.basename(x[0]).split('.')[0], filename=x[0]) for x in lines]
else:
annos = [dict(frame_dir=osp.basename(x[0]).split('.')[0], filename=x[0], label=int(x[1])) for x in lines]
rank = 0 # 添加该
world_size = 1 # 添加
# init_dist('pytorch', backend='nccl')
# rank, world_size = get_dist_info()
#
# if rank == 0:
# os.makedirs(args.tmpdir, exist_ok=True)
# dist.barrier()
my_part = annos
# my_part = annos[rank::world_size]
print("from det_model")
det_model = init_detector(args.det_config, args.det_ckpt, 'cuda')
assert det_model.CLASSES[0] == 'person', 'A detector trained on COCO is required'
print("from pose_model")
pose_model = init_pose_model(args.pose_config, args.pose_ckpt, 'cuda')
n = 0
for anno in tqdm(my_part):
frames = extract_frame(anno['filename'])
print("anno['filename", anno['filename'])
det_results = detection_inference(det_model, frames)
# * Get detection results for human
det_results = [x[0] for x in det_results]
for i, res in enumerate(det_results):
# * filter boxes with small scores
res = res[res[:, 4] >= args.det_score_thr]
# * filter boxes with small areas
box_areas = (res[:, 3] - res[:, 1]) * (res[:, 2] - res[:, 0])
assert np.all(box_areas >= 0)
res = res[box_areas >= args.det_area_thr]
det_results[i] = res
pose_results = pose_inference(pose_model, frames, det_results)
shape = frames[0].shape[:2]
anno['img_shape'] = anno['original_shape'] = shape
anno['total_frames'] = len(frames)
anno['num_person_raw'] = pose_results.shape[0]
anno['keypoint'] = pose_results[..., :2].astype(np.float16)
anno['keypoint_score'] = pose_results[..., 2].astype(np.float16)
anno.pop('filename')
mmcv.dump(my_part, osp.join(args.tmpdir, f'part_{rank}.pkl'))
# dist.barrier()
if rank == 0:
parts = [mmcv.load(osp.join(args.tmpdir, f'part_{i}.pkl')) for i in range(world_size)]
rem = len(annos) % world_size
if rem:
for i in range(rem, world_size):
parts[i].append(None)
ordered_results = []
for res in zip(*parts):
ordered_results.extend(list(res))
ordered_results = ordered_results[:len(annos)]
mmcv.dump(ordered_results, args.out)
if __name__ == '__main__':
# default_mmdet_root = osp.dirname(mmcv.__path__[0])
# default_mmpose_root = osp.dirname(mmcv.__path__[0])
main()
然后执行命令
python tools/data/custom_2d_skeleton.py --video-list ../data/Weizmann/Weizmann.list --out ../data/Weizmann/train.pkl
根据上面生成的train.pkl和train.json、test.json文件,生成训练要用的pkl文件。
其中
dirpath = '../data/Weizmann' pklname='train.pkl' newpklname='Wei_xsub_stgn++.pkl'
def traintest(dirpath,pklname,newpklname):
os.chdir(dirpath)
train = load('train.json')
test = load('test.json')
annotations = load(pklname)
split = dict()
split['xsub_train'] = [x['vid_name'] for x in train]
split['xsub_val'] = [x['vid_name'] for x in test]
dump(dict(split=split, annotations=annotations), newpklname)
选定要使用的模型,我选择了stgcn++,使用了configs/stgcn++/stgcn++_ntu120_xsub_hrnet/j.py
里面有几个地方修改了
#num_classes=10 改成自己数据集的类别数量
model = dict(
type='RecognizerGCN',
backbone=dict(
type='STGCN',
gcn_adaptive='init',
gcn_with_res=True,
tcn_type='mstcn',
graph_cfg=dict(layout='coco', mode='spatial')),
cls_head=dict(type='GCNHead', num_classes=10, in_channels=256))
dataset_type = 'PoseDataset'
#ann_file,改成上面存放pkl文件的路径
ann_file = './data/Weizmann/wei_xsub_stgn++_ch.pkl'
#下面的train_pipeline、val_pipeline和test_pipeline中num_person可以改成1,我猜是视频中人的数
#量,但是没有证据
train_pipeline = [
dict(type='PreNormalize2D'),
dict(type='GenSkeFeat', dataset='coco', feats=['j']),
dict(type='UniformSample', clip_len=100),
dict(type='PoseDecode'),
dict(type='FormatGCNInput', num_person=1),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
val_pipeline = [
dict(type='PreNormalize2D'),
dict(type='GenSkeFeat', dataset='coco', feats=['j']),
dict(type='UniformSample', clip_len=100, num_clips=1, test_mode=True),
dict(type='PoseDecode'),
dict(type='FormatGCNInput', num_person=1),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
test_pipeline = [
dict(type='PreNormalize2D'),
dict(type='GenSkeFeat', dataset='coco', feats=['j']),
dict(type='UniformSample', clip_len=100, num_clips=10, test_mode=True),
dict(type='PoseDecode'),
dict(type='FormatGCNInput', num_person=1),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
#这里的split='xsub_train'、split='xsub_val'可以按照自己写入的时候的key键进行修改,但是要保证
#wei_xsub_stgn++_ch.pkl中的和这里的一致
data = dict(
videos_per_gpu=16,
workers_per_gpu=2,
test_dataloader=dict(videos_per_gpu=1),
train=dict(
type='RepeatDataset',
times=5,
dataset=dict(type=dataset_type, ann_file=ann_file, pipeline=train_pipeline, split='xsub_train')),
val=dict(type=dataset_type, ann_file=ann_file, pipeline=val_pipeline, split='xsub_val'),
test=dict(type=dataset_type, ann_file=ann_file, pipeline=test_pipeline, split='xsub_val'))
# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
#可以修改训练的轮数total_epochs
total_epochs = 100
checkpoint_config = dict(interval=1)
evaluation = dict(interval=1, metrics=['top_k_accuracy'])
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
# runtime settings
log_level = 'INFO'
#work_dir为保存训练结果文件的地方,可以自己修改
work_dir = './work_dirs/stgcn++/stgcn++_ntu120_xsub_hrnet/j_Wei5'
随后,运行
bash tools/dist_train.sh configs/stgcn++/stgcn++_ntu120_xsub_hrnet/j.py 1 --validate --test-last --test-best
我训练得到的最好结果如下
2022-07-29 11:02:37,424 - pyskl - INFO - Testing results of the best checkpoint 2022-07-29 11:02:37,424 - pyskl - INFO - top1_acc: 0.9000 2022-07-29 11:02:37,424 - pyskl - INFO - top5_acc: 1.0000
注意,pth文件选用的是训练结果最好的,test-res.json得到的是每个训练视频属于类别的概率
bash tools/dist_test.sh configs/stgcn++/stgcn++_ntu120_xsub_hrnet/j.py work_dirs/stgcn++/stgcn++_ntu120_xsub_hrnet/j_Wei4/best_top1_acc_epoch_39.pth 1 --out data/Weizmann/test-res.json --eval top_k_accuracy mean_class_accuracy
运行自己训练的模型时,主要要在../tools/data/label_map文件夹下建立数据集标签名称,从小到大排列,这样得到的输出视频画面中的标签才不会错。
python demo/demo_skeleton.py video/shahar_1.avi res/shahar_1_res.mp4
--config ../configs/stgcn++/stgcn++_ntu120_xsub_hrnet/j.py
--checkpoint ../work_dirs/stgcn++/stgcn++_ntu120_xsub_hrnet/j_Wei4/best_top1_acc_epoch_39.pth
--label-map ../tools/data/label_map/Weizmann.txt
我还用KTH数据集进行了训练,得到结果为0.9167,也还不错了
stgcn++一个视频只能给出一个动作标签,如果想要实现识别一段视频中的多个动作,需要将视频分段。比如说设置200帧为一段,然后将一段视频输入到模型中,得到识别结果。这样的硬切分,会导致动作识别效果不好。也可以识别多人的动作,在姿态识别和追踪那里改一下就行了,这个不多说了,就是数据处理的问题。
我当时使用自建的数据集训练模型,准确率很高,现在想想应该是过拟合了。过拟合有很多方法解决,我那只是个demo,也就没有再做了。
还有,这博客看看就行了,我当时也只是做成demo看看,学习一下用自己的数据集训练模型。评论区友好讨论,我看到会回复。
但是要源码的不太行,我第一次编辑这个博客已经是快三个月之前了,你是为什么觉得我会为了你找项目代码。而且pyskl本来就是个开源项目,上面过程也写得差不多了,出现别的问题自己再搜一些,多看看别人的博客。