CGD:超强的跨视图融合分类网络

Title: CGD: Multi-View Clustering via Cross-View Graph Diffusion

Summary

  • 现有的多视图处理模型都是先进行表征学习,通过学习得到的表征得到统一的图,再利用该图进行谱聚类。本文考虑将特征通过kNN构图得到每个视图的图,再通过多视图融合迭代公式进行融合扩散。这样,信息是在多个视图中进行扩散的,因此可以学习得到多个视图之间的互补和公共信息。

Problem Statement

  • 现有的基于表征学习的多视图处理方法存在诸多挑战,例如:模型庞大、计算量高、需要调参等。
  • 图扩散仅仅在单个视图上有应用,现在还没有人将图扩散应用到多个视图中。

Method

  • 归一化的扩散流程,可以写成如下优化形式:
    CGD:超强的跨视图融合分类网络_第1张图片
  • 该问题的闭式解为:
    在这里插入图片描述
  • 单个视图的扩散公式为:
    在这里插入图片描述
  • 将单个视图的扩散公式扩展到多个视图上:
    CGD:超强的跨视图融合分类网络_第2张图片
  • 新的构图方法:
    CGD:超强的跨视图融合分类网络_第3张图片
  • 计算自适应的可变参数,用于权衡原始结构和扩散结构:
    CGD:超强的跨视图融合分类网络_第4张图片
  • 最终将扩散后的多个视图图结构直接求和作为最终的图结构,模型图如下:
    CGD:超强的跨视图融合分类网络_第5张图片

Evaluation

  • 在七个聚类的指标上进行实验评估,多视图数据集如下:
    CGD:超强的跨视图融合分类网络_第6张图片

Conclusion

  • 论文将单个图的扩散公式扩展到多个视图上,取得了显著的效果。

Notes

  • Graph based multi-view clustering has been paid great attention by exploring the neighborhood relationship among data points from multiple views.
  • Extensive experiments on several benchmark datasets are conducted to demonstrate the effectiveness of the proposed method in terms of seven clustering evaluation metrics.
  • It is not uncommon that an object is usually described by multi-view features.
  • Multi-view clustering, which partitions these multi-view data into different groups by using the complementary information of multi-view feature sets to ensure that highly similar instances are divided into the same group, is an important branch of multi-view learning.
  • In general, most of previous multi-view clustering methods employ graph-based models since the similarity graph can characterize the data structure effectively.

References

  • Regularized diffusion process for visual retrieval.
  • Diffusion processes for retrieval revisited.
  • Mpgraph: multi-view penalised graph clustering for predicting drug-target interactions.
  • Late fusion incomplete multi-view clustering.
  • Parameter-free auto-weighted multiple graph learning: a framework for multi-view clustering and semi-supervised classification.
  • Learning a joint affinity graph for multiview subspace clustering.
  • Gmc: graph-based multi-view clustering.
  • Graph learning for multiview clustering.
  • Multiview consensus graph clustering.

你可能感兴趣的:(论文笔记,神经网络,机器学习,深度学习)