掌握构建决策树的基本流程
Anaconda/Jupyter notebook/Pycharm
编码实现基于信息增益进行划分选择的决策树算法,为给定数据生成一棵决策树;
from math import log
import numpy as np
import operator
import csv
#方式1;
def loaddata ():
dataSet = [[0, 0,0,0,0,0, 'yes'],
[1, 0,1,0,0,0,'yes'],
[1, 0,0,0,0,0,'yes'],
[0, 0,1,0,0,0,'yes'],
[2, 0,0,0,0,0,'yes'],
[0, 1,0,0,1,1,'yes'],
[1, 1,0,1,1,1,'yes'],
[1, 1,0,0,1,0, 'yes'],
[1, 1,1,1,1,0,'no'],
[0, 2,2,0,2,1,'no'],
[2, 2,2,2,2,0,'no'],
[2, 0,0,2,2,1,'no'],
[0, 1,0,1,0,0, 'no'],
[2, 1,1,1,0,0,'no'],
[1, 1,0,0,1,1,'no'],
[2, 0,0,2,2,0,'no'],
[0, 0,1,1,1,0,'no']]
feature_name = ['a1','a2','a3','a4','a5','a6']
return dataSet, feature_name
def entropy(dataSet):
#数据集条数
m = len(dataSet)
#保存所有的类别及属于该类别的样本数
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
#保存熵值
e = 0.0
#补充计算信息熵的代码
for key in labelCounts:
prob=float(labelCounts[key])/m
e-=prob*log(prob,2)
return e
def splitDataSet(dataSet, axis, value):
#补充按给定特征和特征值划分好的数据集的代码
# axis对应的是特征的索引;
retDataSet = []
#遍历数据集
for featVec in dataSet:
if featVec[axis] == value:
reduceFeatVec = featVec[:axis]
reduceFeatVec.extend(featVec[axis+1:])
retDataSet.append(reduceFeatVec)
return retDataSet
def chooseBestFeature(dataSet):
n = len(dataSet[0]) - 1
#计数整个数据集的熵
baseEntropy = entropy(dataSet)
bestInfoGain = 0.0; bestFeature = -1
#遍历每个特征
for i in range(n):
#获取当前特征i的所有可能取值
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
#遍历特征i的每一个可能的取值
for value in uniqueVals:
#按特征i的value值进行数据集的划分
subDataSet = splitDataSet(dataSet, i, value)
#补充计算条件熵的代码
prob=len(subDataSet)/float(len(dataSet))
newEntropy += prob*entropy(subDataSet)
#计算信息增益
infoGain = baseEntropy - newEntropy
#保存当前最大的信息增益及对应的特征
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def classVote(classList):
#定义字典,保存每个标签对应的个数
classCount={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
#排序
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def trainTree(dataSet,feature_name):
classList = [example[-1] for example in dataSet]
#所有类别都一致
if classList.count(classList[0]) == len(classList):
return classList[0]
#数据集中没有特征
if len(dataSet[0]) == 1:
return classVote(classList)
#选择最优划分特征
bestFeat = chooseBestFeature(dataSet)
bestFeatName = feature_name[bestFeat]
myTree = {bestFeatName:{}}
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
#遍历uniqueVals中的每个值,生成相应的分支
for value in uniqueVals:
sub_feature_name = feature_name[:]
# 生成在dataSet中bestFeat取值为value的子集;
sub_dataset=splitDataSet(dataSet,bestFeat,value)
# 根据得到的子集,生成决策树
myTree[bestFeatName][value]=trainTree(sub_dataset,sub_feature_name)
return myTree
myDat,feature_name = loaddata()
myTree = trainTree(myDat,feature_name)
print(myTree)
def predict(inputTree,featLabels,testVec):
firstStr = list(inputTree.keys())[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
if isinstance(valueOfFeat, dict):
classLabel = predict(valueOfFeat, featLabels, testVec)
else: classLabel = valueOfFeat
return classLabel
print(predict(myTree,feature_name,[1,1,0,1,0,0]))