参考文档:https://pytorch.org/docs/stable/optim.html
参考文档:https://pytorch.org/docs/stable/generated/torch.optim.SGD.html#torch.optim.SGD
import torch.optim
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear, CrossEntropyLoss
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=1)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = CrossEntropyLoss()
tudui = Tudui()
optim = torch.optim.SGD(tudui.parameters(), lr=0.01) # 优化器
For循环1:
for data in dataloader:
imgs, targets = data
output = tudui(imgs)
result_loss = loss(output, targets)
optim.zero_grad() # 清零
result_loss.backward() # 反向传播
optim.step() # 调优
print(result_loss)
Files already downloaded and verified
tensor(2.3287, grad_fn=<NllLossBackward0>)
tensor(2.3879, grad_fn=<NllLossBackward0>)
tensor(2.2987, grad_fn=<NllLossBackward0>)
...
For循环2:
for epoch in range(20):
running_loss = 0.0
for data in dataloader:
imgs, targets = data
output = tudui(imgs)
result_loss = loss(output, targets)
optim.zero_grad()
result_loss.backward()
optim.step()
running_loss += result_loss
print(running_loss)
Files already downloaded and verified
tensor(18592.4395, grad_fn=<AddBackward0>)
tensor(16118.4756, grad_fn=<AddBackward0>)
tensor(15450.5898, grad_fn=<AddBackward0>)
...