今天练习使用pytorch的时候,准备上GPU,结果出现了以下错误:
RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same
我百度了几个解决办法,但问题刚好和我的相反,他们的问题是:
RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor)
我的是输入类型(Input)不是GPU类型的,百度的是权重(weight)不是GPU类型的,所以解决办法不适用。
import torch.optim
import torchvision.datasets
# 准备数据集
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from time import time
print(torch.cuda.is_available())
train_data = torchvision.datasets.CIFAR10(root="./dataset",
train=True,
transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset",
train=False,
transform=torchvision.transforms.ToTensor(),
download=True)
print("训练集数据长度:%d" % len(train_data))
print("测试集数据长度:%d" % len(test_data))
# 利用DataLoader加载数据
train_data_loader = DataLoader(train_data, batch_size=64)
test_data_loader = DataLoader(test_data, batch_size=64)
# 搭建神经网络(单独放在一个.py文件)
class Net(nn.Module):
def __init__(self) -> None:
super(Net, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2, 2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2, 2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2, 2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
# 创建网络模型
net = Net()
# 只有模型、数据、损失函数可以运行在GPU上
# if torch.cuda.is_available():
# net = net.cuda()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# if torch.cuda.is_available():
# loss_fn = loss_fn.cuda()
loss_fn.to(device)
# 优化器
learning_rate = 1e-2 # 0.01
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)
# 设置训练网络的参数
# 记录训练次数
total_train_step = 0
# 记录训练次数
total_test_step = 0
# 训练轮数
epoch = 10
start_time = time()
writer = SummaryWriter("./logs/train")
for i in range(epoch):
print("------第%d轮训练------" % (i + 1))
# 训练步骤
for data in train_data_loader:
imgs, targets = data
if torch.cuda.is_available():
imgs, targets = imgs.cuda(), targets.cuda()
# imgs.to(device)
# targets.to(device)
outputs = net(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time()
print(end_time - start_time)
print("训练次数:{},loss:{}".format(total_train_step, loss.item())) # .item()能把tensor类型转化为数字
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤
total_test_loss = 0
total_accuracy = 0
with torch.no_grad(): # 测试时,将梯度归零。不需要调整梯度进行优化
for data in test_data_loader:
imgs, targets = data
if torch.cuda.is_available():
imgs, targets = imgs.cuda(), targets.cuda()
# imgs.to(device)
# targets.to(device)
outputs = net(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print("整体测试集上的loss: {}".format(total_test_loss))
print("整体测试集上的正确率: {}".format(total_accuracy / len(test_data)))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / len(test_data), total_test_step)
total_test_step += 1
# 保存模型
# torch.save(net.state_dict(), "model_{}.pth".format(i))
# print("第{}轮训练模型已保存".format(i))
writer.close()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
for data in train_data_loader:
imgs, targets = data
if torch.cuda.is_available():
imgs, targets = imgs.cuda(), targets.cuda()
# imgs.to(device)
# targets.to(device)
outputs = net(imgs)
在上述代码中,imgs和targets不能用.to(device)
的形式,这样使用后就会出现Input类型(torch.FloatTensor)不是GPU类型的,只能用另外一种方式:
if torch.cuda.is_available():
imgs, targets = imgs.cuda(), targets.cuda()
这样可以解决输入和权重类型不匹配的问题。
https://stackoverflow.com/questions/59013109/runtimeerror-input-type-torch-floattensor-and-weight-type-torch-cuda-floatte