【pytorch】CGAN编程实现

CGAN介绍

由于原始GAN生成的图像是随机的,不可预测的,无法控制网络输出特定的图片,生成目标类别不明确,可控性不强。针对原始GAN不能生成具有特定属性的图片的问题, Mehdi Mirza等人提出了cGAN,其核心在于将属性信息y 融入生成器G和判别器D中,属性y可以是任何标签信息, 例如图像的类别、人脸图像的面部表情等。

cGAN的中心思想是希望 可以控制 GAN 生成的图片,而不 是单纯的随机生成图片。 具体来说,Conditional GAN 在生成器和判别器的输入中 增加了额外的 条件信息,生成器生成的图片只有足够真实 且与条件相符,才能够通过判别器。

实际上 , 在无条件约束的生成模型中 , 没法控制数据生成的模式。然而,通过额外的信息对模型进行约束,有可能指导数据生成的过程。条件约束可以是类标签 , 可以是图像修补的部分数据, 甚至是来自不同模态的数据

【pytorch】CGAN编程实现_第1张图片
如果将上图绿色部分的y去掉,就是GAN的原理图。

为了实现条件GAN的目的,生成网络和判别网络的原理和 训练方式均要有所改变。

模型部分,在判别器和生成器中都添加了额外信息 y,y 可 以是类别标签或者是其他类型的数据,可以将 y 作为一个 额外的输入层丢入判别器和生成器。

在生成器中,作者将输入噪声 z 和 y 连在一起隐含表示, 带条件约束这个简单直接的改进被证明非常有效,并广泛用 于后续的相关工作中。论文是在MNIST数据集上以类别标 签为条件变量,生成指定类别的图像。作者还探索了CGAN 在用于图像自动标注的多模态学习上的应用,在MIR Flickr25000数据集上,以图像特征为条件变量,生成该图像的tag的词向量。

缺陷

cGAN生成的图像虽有很多缺陷,譬如图像边缘模糊,生成的图像分辨率太低等,但是它为后面的pix2pixGAN和CycleGAN开拓了道路,这两个模型转换图像风格时对属性特征的 处理方法均受cGAN启发。

Code

详细解释都在代码里标注了~

import torch,torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import LabelBinarizer
import random,numpy.random
 
#设置随机种子, numpy, pytorch, python随机种子
def seed_torch(seed=2021):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
seed_torch()
 
 
#rusume是否使用预训练模型继续训练,问号处输入模型的编号
resume = True   #是继续训练,否重新训练
datasets = 'cifar10'  #选择cifar10,  mnist, fashion_mnist,STL10,Anime
 
if datasets == 'cifar10' or  datasets=='STL10'or datasets=='Anime':
    nc = 3  #图片的通道数
elif datasets == 'mnist' or datasets== 'fashion_mnist':
    nc = 1
else:
    print('数据集选择错误')
 
 
#类别数
n_classes = 10
 
#控制生成器生成指定标签的图片
target_label=4
 
#训练批次数
batch_size = 32
 
#噪声向量的维度
nz = 100 
 
#判别器的深度
ndf = 64
#生成器的深度
ngf = 64
 
#真实标签
real_label = 1.0
#假标签
fake_label = 0.0
start_epoch = 0
 
 
#模型

#生成器                             #(N,nz+n_classes, 1,1)
netG = nn.Sequential(nn.ConvTranspose2d(nz+n_classes, ngf*8,4, 1,0,   bias=False), nn.BatchNorm2d(ngf*8), nn.LeakyReLU(0.2,inplace=True),
                     nn.ConvTranspose2d(ngf*8,ngf*4,4,2,1,  bias=False), nn.BatchNorm2d(ngf*4), nn.LeakyReLU(0.2,inplace=True),
                     nn.ConvTranspose2d(ngf*4, ngf*4,4,2, 1,bias=False), nn.BatchNorm2d(ngf*4), nn.LeakyReLU(0.2,inplace=True),
                     nn.ConvTranspose2d(ngf*4, ngf*2,4,2, 1,bias=False), nn.BatchNorm2d(ngf*2), nn.LeakyReLU(0.2,inplace=True),
                     nn.ConvTranspose2d(ngf*2, ngf*2,4,2, 1,bias=False), nn.BatchNorm2d(ngf*2), nn.LeakyReLU(0.2,inplace=True),
                     nn.ConvTranspose2d(ngf*2, nc,4,2,1,    bias=False), 
                     nn.Tanh()  #(N,nc, 128,128)
          )
        
#判别器             #(N,nc+n_classes, 128,128)
netD = nn.Sequential(nn.Conv2d(nc+n_classes,   ndf*2, 4,2,1, bias=False), nn.BatchNorm2d(ndf*2),nn.LeakyReLU(0.2,inplace=True),
                     nn.Conv2d(ndf*2,ndf*2, 4,2,1, bias=False), nn.BatchNorm2d(ndf*2),nn.LeakyReLU(0.2,inplace=True),
                     nn.Conv2d(ndf*2,  ndf*4,4,2,1,bias=False),nn.BatchNorm2d(ndf*4),nn.LeakyReLU(0.2,inplace=True),
                     nn.Conv2d(ndf*4,ndf*4,4,2,1,  bias=False),  nn.BatchNorm2d(ndf*4),nn.LeakyReLU(0.2,inplace=True),
                     nn.Conv2d(ndf*4,ndf*8,4,2,1,  bias=False),  nn.BatchNorm2d(ndf*8),nn.LeakyReLU(0.2,inplace=True),
                     nn.Conv2d(ndf*8,1,  4,1,0,    bias=False),  #(N,1,1,1)
                     nn.Flatten(),    #(N,1)
                     nn.Sigmoid()
                    )
 
 
# custom weights initialization called on netG and netD
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        torch.nn.init.normal_(m.weight, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        torch.nn.init.normal_(m.weight, 1.0, 0.02)
        torch.nn.init.zeros_(m.bias)
 
netD.apply(weights_init)
netG.apply(weights_init)
 
 
#加载数据集
apply_transform1 = transforms.Compose([
        transforms.Resize((128,128)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])
 
apply_transform2 = transforms.Compose([
        transforms.Resize((128,128)),
        transforms.ToTensor(),
        transforms.Normalize((0.5,), (0.5,)),
    ])
 
 
if datasets == 'cifar100':
    train_dataset = torchvision.datasets.CIFAR100(root='./Data', train=False, download=True,transform=apply_transform1)
elif datasets == 'cifar10':
    train_dataset = torchvision.datasets.CIFAR10(root='./Data', train=False, download=True,transform=apply_transform1)
elif datasets == 'STL10':
    train_dataset = torchvision.datasets.STL10(root='../data/STL10', split='train', download=True,transform=apply_transform1)
elif datasets == 'mnist':
    train_dataset = torchvision.datasets.MNIST(root='../data/mnist', train=False, download=True,transform=apply_transform2)
elif datasets == 'fashion_mnist':
    train_dataset = torchvision.datasets.FashionMNIST(root='../data/fashion_mnist', train=False, download=True,transform=apply_transform2)
elif datasets == 'Anime':
    train_dataset = torchvision.datasets.ImageFolder(root='../data/Anime',transform=apply_transform1)
else:
    print('数据集不存在')
 
 
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
 
#定义损失函数
criterion = torch.nn.BCELoss()
device = torch.device('cuda'if torch.cuda.is_available() else 'cpu')
 
# setup optimizer
# optimizerD = torch.optim.Adam(netD.parameters(), lr=0.0002,betas=(0.5, 0.999))
optimizerG = torch.optim.Adam(netG.parameters(), lr=0.0002,betas=(0.5,0.999))
optimizerD = torch.optim.RMSprop(netD.parameters(),
                    lr=0.0002,
                    alpha=0.99,
                    eps=1e-08,
                    weight_decay=0,
                    momentum=0,)
 
 
#显示16张图片
 
if datasets=='Anime':
    image,label = next(iter(train_loader))
    image = (image*0.5+0.5)[:16]
elif datasets=='mnist' or datasets=='fashion_mnist':
    image = next(iter(train_loader))[0]
    image = image[:16]*0.5+0.5
    
elif datasets=='STL10' :
    image = torch.Tensor(train_dataset.data[:16]/255)
else:
    image = torch.Tensor(train_dataset.data[:16]/255).permute(0,3,1,2)
plt.imshow(torchvision.utils.make_grid(image,nrow=4).permute(1,2,0))


 
 
lb = LabelBinarizer()
lb.fit(list(range(0,n_classes)))
 
   #将标签进行one-hot编码
def to_categrical(y: torch.FloatTensor):
    y_one_hot = lb.transform(y.cpu())
    floatTensor = torch.FloatTensor(y_one_hot)
    return floatTensor.to(device)
 
#样本和one-hot标签进行连接,以此作为条件生成
def concanate_data_label(data, y):  #data (N,nc, 128,128)
    y_one_hot = to_categrical(y)  #(N,1)->(N,n_classes)
    
    con = torch.cat((data, y_one_hot), 1)
    
    return con
 
 
#如果继续训练,就加载预训练模型
if resume:
    print('==> Resuming from checkpoint..')
    checkpoint = torch.load('./checkpoint/GAN_%s_best.pth'%datasets)
    netG.load_state_dict(checkpoint['net_G'])                  
    netD.load_state_dict(checkpoint['net_D'])
    start_epoch = checkpoint['start_epoch']
#print('netG:','\n',netG)
#print('netD:','\n',netD)
    
print('training on:   ',device, '   start_epoch',start_epoch)
 
 
netD, netG = netD.to(device), netG.to(device)

#固定生成器,训练判别器
for epoch in range(start_epoch,500):
    for batch, (data, target) in enumerate(train_loader):
        data = data.to(device)
        target = target.to(device)
        #拼接真实数据和标签
        target1 = to_categrical(target).unsqueeze(2).unsqueeze(3).float()  #加到噪声上 torch.Size([N, n_classes, 1, 1])
        target2 = target1.repeat(1, 1, data.size(2), data.size(3))   #加到数据上(N,n_classes,128,128)
        data = torch.cat((data, target2),dim=1)  #将标签与数据拼接 (N,channels,128,128),(N,n_classes, 128,128)->(N,channels+nc_classes,128,128)
        
        label = torch.full((data.size(0),1), real_label).to(device) # 按照shape,创建一模一样的向量
 
       #(1)训练判别器 
        #training real data
        netD.zero_grad()
        output = netD(data)
        loss_D1 = criterion(output, label)
        loss_D1.backward() # 真实数据被判别为1 
        
        #training fake data,拼接噪声和标签
        noise_z = torch.randn(data.size(0), nz, 1, 1).to(device) # (N,噪声向量维度100,1,1)
        noise_z = torch.cat((noise_z, target1),dim=1) #(N,nz100+n_classes,1,1)
        #拼接假数据和标签
        fake_data = netG(noise_z) # 假数据来自噪声
        fake_data = torch.cat((fake_data,target2),dim=1) #(N,nc+n_classes,128,128)
        label = torch.full((data.size(0),1), fake_label).to(device) # (N,1)
    
        output = netD(fake_data.detach()) # (N,1)
        loss_D2 = criterion(output, label)
        loss_D2.backward()
        
        #更新判别器
        optimizerD.step()
        
       #(2)训练生成器
        netG.zero_grad()
        label = torch.full((data.size(0),1), real_label).to(device) # 像真的数据靠近
        output = netD(fake_data.to(device))
        lossG = criterion(output, label)
        lossG.backward()
        
        #更新生成器
        optimizerG.step()
        
        if batch %10==0:
            print('epoch: %4d, batch: %4d, discriminator loss: %.4f, generator loss: %.4f'
                  %(epoch, batch, loss_D1.item()+loss_D2.item(), lossG.item()))
        


        #每2个epoch保存图片
        if epoch%2==0 and batch==0:
            #生成指定target_label的图片
            noise_z1 = torch.randn(data.size(0), nz, 1, 1).to(device)
            target3 = to_categrical(torch.full((data.size(0),1), target_label)).unsqueeze(2).unsqueeze(3).float()  #加到噪声上,目的是生成类别4的图片
            noise_z = torch.cat((noise_z1, target3),dim=1) #(N,nz+n_classes,1,1)
            
            
            fake_data = netG(noise_z.to(device))
            #如果是单通道图片,那么就转成三通道进行保存
            if nc ==1:
                fake_data=torch.cat((fake_data,fake_data,fake_data),dim=1)   #fake_data(N,1,H,W)->(N,3,H,W)
            #保存图片
            data = fake_data.detach().cpu().permute(0,2,3,1) # 通道数放最后
            data = np.array(data)
 
            #保存单张图片,将数据还原
            data = (data*0.5+0.5) # 这一步缩放很重要,否则某些像素点可能会小于0
 
            plt.imsave('./generated_fake/%s/epoch_%d.png'%(datasets,epoch), data[0])
            torchvision.utils.save_image(fake_data[:16]*0.5+0.5,'./generated_fake/%s/epoch_%d_grid.png'%(datasets,epoch),nrow=4,normalize=True)
            
    #保存模型       
    state = {
                'net_G': netG.state_dict(),
                'net_D': netD.state_dict(),
                'start_epoch':epoch+1
            }
    torch.save(state, './checkpoint/GAN_%s_best.pth'%(datasets))
    torch.save(state, './checkpoint/GAN_%s_best_copy.pth'%(datasets))

效果如下:
【pytorch】CGAN编程实现_第2张图片

此外,DCGAN请参阅:
https://blog.csdn.net/stay_zezo/article/details/115735276

参考:
https://blog.csdn.net/studyeboy/article/details/118724526
https://blog.csdn.net/m0_62128864/article/details/123972758

你可能感兴趣的:(pytorch,深度学习,计算机视觉)